ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли замостить плоскость параболами, среди которых нет равных? (Требуется, чтобы каждая точка плоскости принадлежала ровно одной параболе и чтобы ни одна парабола не переводилась ни в какую другую параболу движением.) Постройте прямоугольный треугольник по катету и медиане, проведённой из вершины прямого угла. С помощью циркуля и линейки постройте треугольник по трём высотам.
Два выпуклых многоугольника A1A2...An и B1B2...Bn (n ≥ 4) таковы, что каждая сторона первого больше соответствующей стороны второго. Продолжения равных хорд AB и CD окружности соответственно за
точки B и C пересекаются в точке P. Какое наибольшее число острых углов может иметь выпуклый
многоугольник?
Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 51]
Посередине между двумя параллельными улицами стоят в один ряд одинаковые дома со стороной, равной a. Расстояние между улицами – 3a, а расстояние между двумя соседними домами – 2a (см. рис.). Одна улица патрулируется полицейскими, которые движутся на расстоянии 9a друг от друга со скоростью v. К тому времени, как первый полицейский проходит мимо середины некоторого дома, точно напротив него на другой улице появляется гангстер. С какой постоянной скоростью и в какую сторону должен двигаться по этой улице гангстер, чтобы ни один полицейский его не заметил?
Вася и Петя играют в следующую игру. На доске написаны два числа: 1/2009 и 1/2008. На каждом ходу Вася называет любое число x, а Петя увеличивает одно из чисел на доске (какое захочет) на x. Вася выигрывает, если в какой-то момент одно из чисел на доске станет равным 1. Сможет ли Вася выиграть, как бы ни действовал Петя?
Пусть P(x) – многочлен нечётной степени. Докажите, что уравнение P(P(x)) = 0 имеет не меньше различных действительных корней, чем уравнение P(x) = 0.
В стране две столицы и несколько городов, некоторые из них соединены дорогами. Среди дорог есть платные. Известно, что на любом пути из южной столицы в северную имеется не меньше 10 платных дорог. Докажите, что все платные дороги можно раздать 10 компаниям так, чтобы на любом пути из южной столицы в северную имелись дороги каждой из компаний.
Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 51]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке