Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Через точки A и B проведены окружности S1 и S2, касающиеся окружности S, и окружность S3, перпендикулярная S. Докажите, что S3 образует равные углы с окружностями S1 и S2.

Вниз   Решение


Окружность SA проходит через точки A и C; окружность SB проходит через точки B и C; центры обеих окружностей лежат на прямой AB. Окружность S касается окружностей SA и SB, а кроме того, она касается отрезка AB в точке C1. Докажите, что CC1 — биссектриса треугольника ABC.

ВверхВниз   Решение


Дан правильный шестиугольник ABCDEF. Известно, что $ \overrightarrow{AB} $ = $ \overrightarrow{a}$, $ \overrightarrow{AF} $ = $ \overrightarrow{b}$. Найдите векторы $ \overrightarrow{AD}$, $ \overrightarrow{BD}$, $ \overrightarrow{FD}$ и $ \overrightarrow{BM}$, где M — середина стороны EF.

ВверхВниз   Решение


Данной окружности касаются две равных меньших окружностей — одна изнутри, другая извне, причём дуга между точками касания содержит 60o. Радиусы меньших окружностей равны r, радиус большей окружности равен R. Найдите расстояние между центрами меньших окружностей.

ВверхВниз   Решение


Найдите сумму квадратов расстояний от вершин правильного n-угольника, вписанного в окружность радиуса R, до произвольной прямой, проходящей через центр многоугольника.

ВверхВниз   Решение


Четырехугольник ABCD вписан в окружность с центром O. Точка X такова, что $ \angle$BAX = $ \angle$CDX = 90o. Докажите, что точка пересечения диагоналей четырехугольника ABCD лежит на прямой XO.

Вверх   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 508]      



Задача 57107

Тема:   [ Теорема Паскаля ]
Сложность: 6+
Классы: 9

Даны треугольник ABC и некоторая точка T. Пусть P и Q — основания перпендикуляров, опущенных из точки T на прямые AB и AC соответственно, a R и S — основания перпендикуляров, опущенных из точки A на прямые TC и TB соответственно. Докажите, что точка пересечения X прямых PR и QS лежит на прямой BC.
Прислать комментарий     Решение


Задача 57108

Тема:   [ Теорема Паскаля ]
Сложность: 6+
Классы: 9

В треугольнике ABC проведены высоты AA1 и BB1 и биссектрисы AA2 и BB2; вписанная окружность касается сторон BC и AC в точках A3 и B3. Докажите, что прямые  A1B1, A2B2 и A3B3 пересекаются в одной точке или параллельны.
Прислать комментарий     Решение


Задача 57109

Тема:   [ Теорема Паскаля ]
Сложность: 6+
Классы: 9

Четырехугольник ABCD вписан в окружность SX — произвольная точка, M и N — вторые точки пересечения прямых XA и XD с окружностью S. Прямые DC и AXAB и DX пересекаются в точках E и F. Докажите, что точка пересечения прямых MN и EF лежит на прямой BC.
Прислать комментарий     Решение


Задача 57110

Тема:   [ Теорема Паскаля ]
Сложность: 6+
Классы: 9

Четырехугольник ABCD вписан в окружность с центром O. Точка X такова, что $ \angle$BAX = $ \angle$CDX = 90o. Докажите, что точка пересечения диагоналей четырехугольника ABCD лежит на прямой XO.
Прислать комментарий     Решение


Задача 57111

Тема:   [ Теорема Паскаля ]
Сложность: 6+
Классы: 9

Точки A и A1, лежащие внутри окружности с центром O, симметричны относительно точки O. Лучи AP и A1P1 сонаправлены, лучи AQ и A1Q1 тоже сонаправлены. Докажите, что точка пересечения прямых P1Q и PQ1 лежит на прямой AA1. (Точки P, P1, Q и Q1 лежат на окружности.)
Прислать комментарий     Решение


Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 508]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .