ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны три точки, не лежащие на одной прямой. Через каждые две из них провести окружность так, чтобы построенные окружности были взаимно ортогональны.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 55455

Темы:   [ Окружности (построения) ]
[ Касающиеся окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
[ Построение окружностей ]
Сложность: 5
Классы: 8,9

Даны две точки A и B и окружность S . С помощью циркуля и линейки постройте окружность, проходящую через точки A и B и касающуюся окружности S .
Прислать комментарий     Решение


Задача 57252

Тема:   [ Окружности (построения) ]
Сложность: 5
Классы: 8,9

Даны три точки, не лежащие на одной прямой. Через каждые две из них провести окружность так, чтобы построенные окружности были взаимно ортогональны.
Прислать комментарий     Решение


Задача 76457

Тема:   [ Окружности (построения) ]
Сложность: 5
Классы: 8,9

Даны две точки A и B и окружность. Найти на окружности точку X так, чтобы прямые AX и BX отсекли на окружности хорду CD, параллельную данной прямой MN.
Прислать комментарий     Решение


Задача 76467

Тема:   [ Окружности (построения) ]
Сложность: 5
Классы: 10,11

Построить окружность, равноудалённую от четырёх точек плоскости. Сколько решений имеет задача?
Прислать комментарий     Решение


Задача 57253

Тема:   [ Окружности (построения) ]
Сложность: 5+
Классы: 8,9

Постройте окружность, равноудалённую от четырёх данных точек.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .