Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Треугольники ABC и BAD равны, причём точки C и D лежат по разные стороны от прямой AB. Докажите, что:
  а) треугольники CBD и DAC равны;
  б) прямая CD делит отрезок AB пополам.

Вниз   Решение


С помощью циркуля и линейки постройте треугольник по стороне, медиане, проведённой к этой стороне, и высоте, проведённой к другой стороне.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по двум высотам и углу, из вершины которого проведена одна из них.

ВверхВниз   Решение


Существуют ли в пространстве четыре точки A, B, C, D такие, что AB = CD = 8 см, AC = BD = 10 см, AD = BC = 13 см?

ВверхВниз   Решение


В некотором выпуклом n-угольнике  (n > 3)  все расстояния между вершинами различны.
  а) Назовём вершину неинтересной, если самая близкая к ней вершина – соседняя с ней. Каково наименьшее возможное количество неинтересных вершин (при данном n)?
  б) Назовём вершину необычной, если самая дальняя от неё вершина – соседняя с ней. Каково наибольшее возможное количество необычных вершин (при данном n)?

ВверхВниз   Решение


На окружности S с диаметром AB взята точка C, из точки C опущен перпендикуляр CH на прямую AB. Докажите, что общая хорда окружности S и окружности S1 с центром C и радиусом CH делит отрезок CH пополам.

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. Через точку K первой окружности проводятся прямые KA и KB, вторично пересекающие другую окружность в точках P и Q соответственно. Докажите, что хорда PQ окружности перпендикулярна диаметру KM первой окружности.

ВверхВниз   Решение


Докажите, что любой выпуклый многоугольник площади 1 можно поместить в прямоугольник площади 2.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник ABC, если заданы его наименьший угол при вершине A и отрезки  d = AB – BC  и  e = AC – BC.

ВверхВниз   Решение


Постройте треугольник по стороне, медиане, проведённой к этой стороне и медиане, проведённой к одной из двух других сторон.

ВверхВниз   Решение


Автор: Фомин Д.

Отмечено 100 точек – N вершин выпуклого N-угольника и  100 – N  точек внутри этого N-угольника. Точки как-то обозначены, независимо от того, какие являются вершинами N-угольника, а какие лежат внутри. Известно, что никакие три точки не лежат на одной прямой, а никакие четыре – на двух параллельных прямых. Разрешается задавать вопросы типа: чему равна площадь треугольника XYZ (X, Y, Z – из числа отмеченных точек). Докажите, что 300 вопросов достаточно, чтобы выяснить, какие точки являются вершинами N-угольника, и чтобы найти его площадь.

ВверхВниз   Решение


На сторонах BC, CA и AB остроугольного треугольника ABC взяты точки A1, B1 и C1. Докажите, что

2(B1C1cos$\displaystyle \alpha$ + C1A1cos$\displaystyle \beta$ + A1B1cos$\displaystyle \gamma$) $\displaystyle \geq$ a cos$\displaystyle \alpha$ + b cos$\displaystyle \beta$ + c cos$\displaystyle \gamma$.


Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 57496

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 5
Классы: 8

Докажите, что треугольник ABC остроугольный тогда и только тогда, когда длины его проекций на три различных направления равны.
Прислать комментарий     Решение


Задача 57491

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 5+
Классы: 8

Пусть h — наибольшая высота нетупоугольного треугольника. Докажите, что r + R $ \leq$ h.
Прислать комментарий     Решение


Задача 57492

Тема:   [ Неравенства для остроугольных треугольников ]
Сложность: 6
Классы: 8

На сторонах BC, CA и AB остроугольного треугольника ABC взяты точки A1, B1 и C1. Докажите, что

2(B1C1cos$\displaystyle \alpha$ + C1A1cos$\displaystyle \beta$ + A1B1cos$\displaystyle \gamma$) $\displaystyle \geq$ a cos$\displaystyle \alpha$ + b cos$\displaystyle \beta$ + c cos$\displaystyle \gamma$.


Прислать комментарий     Решение

Задача 78007

Темы:   [ Равногранный тетраэдр ]
[ Неравенства для остроугольных треугольников ]
Сложность: 5
Классы: 10,11

Существуют ли в пространстве четыре точки A, B, C, D такие, что AB = CD = 8 см, AC = BD = 10 см, AD = BC = 13 см?
Прислать комментарий     Решение


Задача 57315

Темы:   [ Неравенство треугольника (прочее) ]
[ Теорема косинусов ]
[ Неравенства для остроугольных треугольников ]
[ Алгебраические задачи на неравенство треугольника ]
[ Доказательство от противного ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 5-
Классы: 8,9,10

Автор: Серов М.

Пять отрезков таковы, что из любых трех из них можно составить треугольник. Докажите, что хотя бы один из этих треугольников остроугольный.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .