ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Из клетчатой бумаги вырезан квадрат 17×17. В клетках квадрата произвольным образом написаны числа 1, 2, 3, ..., 70 по одному и только одному числу в каждой клетке. Доказать, что существуют такие четыре различные клетки с центрами в точках A, B, C, D, что  AB = CD,  AD = BC  и сумма чисел, стоящих в клетках с центрами в A и C, равна сумме чисел в клетках с центрами B и D.

Вниз   Решение


Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

ВверхВниз   Решение


Даны две пересекающиеся окружности радиуса R, причем расстояние между их центрами больше R. Докажите, что  β = 3α (рис.).


Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 57633

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 2
Классы: 9

Даны две пересекающиеся окружности радиуса R, причем расстояние между их центрами больше R. Докажите, что  β = 3α (рис.).


Прислать комментарий     Решение

Задача 57651

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 2
Классы: 9

Найдите все треугольники, у которых углы образуют арифметическую прогрессию, а стороны: а) арифметическую прогрессию; б) геометрическую прогрессию.
Прислать комментарий     Решение


Задача 35658

Темы:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
[ Диаметр, основные свойства ]
Сложность: 2+
Классы: 8,9

Дан треугольник со сторонами 2, 3, 4. Найдите радиус наименьшего круга, из которого можно вырезать этот треугольник.
Прислать комментарий     Решение


Задача 57634

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 3
Классы: 9

Докажите, что если  $ {\frac{1}{b}}$ + $ {\frac{1}{c}}$ = $ {\frac{1}{l_a}}$, то  $ \angle$A = 120o.
Прислать комментарий     Решение


Задача 57635

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 3
Классы: 9

В треугольнике ABC высота AH равна медиане BM. Найдите угол MBC.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .