ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC известно, что  AB < BC < AC,  а один из углов вдвое меньше другого и втрое меньше третьего. Найдите угол при вершине A.

Вниз   Решение


Докажите следующий вариант формулы Бине:  

ВверхВниз   Решение


В трапеции ABCD основание BC в два раза меньше основания AD. Из вершины D опущен перпендикуляр DE на сторону AB. Докажите, что  СЕ = CD.

ВверхВниз   Решение


Длина проекции замкнутой выпуклой кривой на любую прямую равна 1. Докажите, что ее длина равна $ \pi$.

Вверх   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 241]      



Задача 57728

Тема:   [ Метод усреднения ]
Сложность: 6+
Классы: 9,10

Длина проекции замкнутой выпуклой кривой на любую прямую равна 1. Докажите, что ее длина равна $ \pi$.
Прислать комментарий     Решение


Задача 57729

Тема:   [ Метод усреднения ]
Сложность: 6+
Классы: 9,10

Дано несколько выпуклых многоугольников, причем нельзя провести прямую так, чтобы она не пересекала ни одного многоугольника и по обе стороны от нее лежал хотя бы один многоугольник. Докажите, что эти многоугольники можно заключить в многоугольник, периметр которого не превосходит суммы их периметров.
Прислать комментарий     Решение


Задача 55374

Темы:   [ Пятиугольники ]
[ Векторы помогают решить задачу ]
Сложность: 2-
Классы: 8,9

В выпуклом пятиугольнике ABCDE с единичными сторонами середины P, Q сторон AB, CD и середины S, T сторон BC, DE соединены отрезками PQ и ST. Пусть M и N – середины отрезков PQ и ST. Найдите длину отрезка MN.

Прислать комментарий     Решение

Задача 35775

Темы:   [ Стереометрия (прочее) ]
[ Векторы (прочее) ]
Сложность: 2+
Классы: 10,11

Существует ли отличный от куба шестигранник, у которого все грани являются равными ромбами?
Прислать комментарий     Решение


Задача 55351

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
Сложность: 3-
Классы: 8,9

Пусть M — середина отрезка AB, O — произвольная точка. Докажите, что $ \overrightarrow{OM} $ = $ {\frac{1}{2}}$($ \overrightarrow{OA} $ + $ \overrightarrow{OB} $).

Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 241]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .