ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите трилинейные координаты точек Брокара.

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 57798

Тема:   [ Трилинейные координаты ]
Сложность: 5
Классы: 9,10

Найдите трилинейные координаты точек Брокара.
Прислать комментарий     Решение


Задача 57797

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

На сторонах AD и DC выпуклого четырехугольника ABCD взяты точки P и Q так, что $ \angle$ABP = $ \angle$CBQ. Отрезки AQ и CP пересекаются в точке E. Докажите, что $ \angle$ABE = $ \angle$CBD.
Прислать комментарий     Решение


Задача 57800

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

Найдите уравнения в трилинейных координатах для: а) описанной окружности; б) вписанной окружности; в) вневписанной окружности.
Прислать комментарий     Решение


Задача 57801

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

Найдите уравнение окружности девяти точек в трилинейных координатах.
Прислать комментарий     Решение


Задача 57802

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

а) Докажите, что в трилинейных координатах любая окружность задается уравнением вида

(px + qy + rz)(x sin$\displaystyle \alpha$ + y sin$\displaystyle \beta$ + z sin$\displaystyle \gamma$) = yz sin$\displaystyle \alpha$ + xz sin$\displaystyle \beta$ + xy sin$\displaystyle \gamma$.


б) Докажите, что радикальная ось двух окружностей, заданных уравнениями такого вида, задается уравнением

p1x + q1y + r1z = p2x + q2y + r2z.


Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .