ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что предельная точка пучка является общей точкой окружностей ортогонального пучка, и наоборот.

Вниз   Решение


На диагоналях AB1 и BC1 граней параллелепипеда ABCDA1B1C1D1 взяты точки M и N , причём отрезки MN и A1C параллельны. Найдите отношение этих отрезков.

ВверхВниз   Решение


При каком наибольшем $n$ существует выпуклый многогранник с $n$ гранями, обладающий следующим свойством: для любой грани найдется точка вне многогранника, из которой видны остальные $n-1$ грани?

ВверхВниз   Решение


Постройте треугольник, если известны отрезки, на которые вписанная окружность делит его сторону, и радиус вписанной окружности.

ВверхВниз   Решение


В квадрате 4×4 нарисовано 15 точек Доказать, что из него можно вырезать квадратик 1×1, не содержащий внутри себя точек.

ВверхВниз   Решение


Найдите трилинейные координаты точек Брокара.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 57798

Тема:   [ Трилинейные координаты ]
Сложность: 5
Классы: 9,10

Найдите трилинейные координаты точек Брокара.
Прислать комментарий     Решение


Задача 57797

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

На сторонах AD и DC выпуклого четырехугольника ABCD взяты точки P и Q так, что $ \angle$ABP = $ \angle$CBQ. Отрезки AQ и CP пересекаются в точке E. Докажите, что $ \angle$ABE = $ \angle$CBD.
Прислать комментарий     Решение


Задача 57800

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

Найдите уравнения в трилинейных координатах для: а) описанной окружности; б) вписанной окружности; в) вневписанной окружности.
Прислать комментарий     Решение


Задача 57801

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

Найдите уравнение окружности девяти точек в трилинейных координатах.
Прислать комментарий     Решение


Задача 57802

Тема:   [ Трилинейные координаты ]
Сложность: 6
Классы: 9,10

а) Докажите, что в трилинейных координатах любая окружность задается уравнением вида

(px + qy + rz)(x sin$\displaystyle \alpha$ + y sin$\displaystyle \beta$ + z sin$\displaystyle \gamma$) = yz sin$\displaystyle \alpha$ + xz sin$\displaystyle \beta$ + xy sin$\displaystyle \gamma$.


б) Докажите, что радикальная ось двух окружностей, заданных уравнениями такого вида, задается уравнением

p1x + q1y + r1z = p2x + q2y + r2z.


Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .