ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны две прямые l1 и l2 и две точки A и B, не
лежащие на этих прямых. Циркулем и линейкой постройте
на прямой l1 такую точку X, чтобы прямые AX и BX
высекали на прямой l2 отрезок, а) имеющий данную длину a;
б) делящийся пополам в данной точке E прямой l2.
В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета? Внешние углы треугольника ABC при вершинах A и C равны 115° и 140°. Прямая, параллельная прямой AC пересекает стороны AB и AC в точках M и N. Точки A и B лежат на прямых a и b соответственно,
а точка P не лежит ни на одной из этих прямых. Циркулем
и линейкой проведите через P прямую, пересекающую прямые a
и b в точках X и Y соответственно таких, что длины
отрезков AX и BY имеют а) данное отношение; б) данное
произведение.
В квадрате со стороной длины 1 расположена ломаная без самопересечений, длина которой не меньше 200. Доказать, что найдётся прямая, параллельная одной из сторон квадрата, пересекающая ломаную не менее чем в 101-й точке. Дана четырёхугольная пирамида SABCD , основание которой – параллелограмм ABCD . Точки M , N и K лежат на ребрах AS , BS и CS соответственно, причём AM:MS = 1:2 , BN:NS = 1:3 , CK:KS = 1:1 . Постройте сечение пирамиды плоскостью MNK . В каком отношении эта плоскость делит ребро SD ? На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2.
Докажите, что если окружности, описанные около треугольников A1B1C1,
A1B2C2, A2B1C2, A2B2C1,
проходят через одну точку, то и окружности, описанные около треугольников
A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через
одну точку.
Докажите, что при центральном проектировании
прямая, не являющаяся исключительной, проецируется в прямую.
Длины сторон треугольника — последовательные
целые числа. Найдите эти числа, если известно, что одна из
медиан перпендикулярна одной из биссектрис.
Пятеро молодых рабочих получили на всех зарплату - 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.
Докажите, что при помощи одной линейки нельзя
разделить данный отрезок пополам.
На биссектрисе внешнего угла C треугольника
ABC взята точка M, отличная от C. Докажите, что
MA + MB > CA + CB.
|
Страница: 1 2 >> [Всего задач: 8]
На биссектрисе внешнего угла C треугольника
ABC взята точка M, отличная от C. Докажите, что
MA + MB > CA + CB.
В треугольнике ABC проведена медиана AM.
Докажите, что
2AM
Вписанная окружность треугольника ABC касается
сторон AC и BC в точках B1 и A1. Докажите, что если
AC > BC, то AA1 > BB1.
Докажите, что площадь любого выпуклого четырехугольника не
превосходит полусуммы произведений противоположных сторон.
Дана прямая l и две точки A и B по одну
сторону от нее. Найдите на прямой l точку X так, чтобы
длина ломаной AXB была минимальна.
Страница: 1 2 >> [Всего задач: 8]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке