ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360o/n относительно некоторой точки.

Вниз   Решение


Каждое из рёбер треугольной пирамиды ABCD равно 1. Точка P на ребре AB , точка Q на ребре BC и точка R на ребре CD взяты так, что AP= , BQ= и CR= . Плоскость PQR пересекает прямую AD в точке S . Найдите угол между прямыми SQ и RQ .

ВверхВниз   Решение


Доказать, что площадь прямоугольника, вписанного в треугольник, не превосходит половины площади этого треугольника.

ВверхВниз   Решение


Каждое из рёбер треугольной пирамиды ABCD равно 1. Точка E на ребре AB , точка F на ребре BC и точка G на ребре CD взяты так, что AE= , BF= и CG= . Плоскость EFG пересекает прямую AD в точке H . Найдите периметр треугольника HEG .

ВверхВниз   Решение


Дан параллелограмм ABCD и точка M. Через точки A, B, C и D проведены прямые, параллельные прямым MC, MD, MA и MB соответственно. Докажите, что они пересекаются в одной точке.

ВверхВниз   Решение


Каждое из рёбер треугольной пирамиды ABCD равно 1. Точка E на ребре AB , точка F на ребре BC и точка G на ребре CD взяты так, что AE= , BF= и CG= . Плоскость EFG пересекает прямую AD в точке H . Найдите периметр треугольника HFG .

ВверхВниз   Решение


Докажите, что при повороте окружность переходит в окружность.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 402]      



Задача 57833

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что при центральной симметрии окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57835

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Противоположные стороны выпуклого шестиугольника попарно равны и параллельны. Докажите, что он имеет центр симметрии.
Прислать комментарий     Решение


Задача 57836

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Дан параллелограмм ABCD и точка M. Через точки A, B, C и D проведены прямые, параллельные прямым MC, MD, MA и MB соответственно. Докажите, что они пересекаются в одной точке.
Прислать комментарий     Решение


Задача 57914

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что при повороте окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57915

Тема:   [ Поворот (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360o/n относительно некоторой точки.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .