Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Медианы треугольника ABC разрезают его на 6 треугольников. Докажите, что центры описанных окружностей этих треугольников лежат на одной окружности.

Вниз   Решение


Докажите, что если вершины шестиугольника ABCDEF лежат на одной конике, то точки пересечения продолжений его противоположных сторон (т. е. прямых AB и DE, BC и EF, CD и AF) лежат на одной прямой (Паскаль).

ВверхВниз   Решение


Школьник хочет вырезать из квадрата размером 2n×2n наибольшее количество прямоугольников размером 1×(n + 1). Найти это количество для каждого натурального значения n.

ВверхВниз   Решение


Докажите, что произвольное уравнение третьей степени  z³ + Az² + Bz + C = 0  при помощи линейной замены переменной  z = x + β  можно привести к виду  x3 + px + q = 0.

ВверхВниз   Решение


В шестиугольнике, описанном около окружности, даны пять последовательных сторон — a, b, c, d, e. Найдите шестую сторону.

ВверхВниз   Решение


Автор: Савин А.П.

В таблице
    0 1 2 3 ... 9
    9 0 1 2 ... 8
    8 9 0 1 ... 7
        ...
    1 2 3 4 ... 0
отмечено 10 элементов так, что в каждой строке и каждом столбце отмечен один элемент.
Докажите, что среди отмеченных элементов есть хотя бы два равных.

ВверхВниз   Решение


Можно ли невыпуклый четырехугольник разрезать двумя прямыми на 6 частей?

Вверх   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 149]      



Задача 116902

Темы:   [ Разные задачи на разрезания ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9

Квадрат разрезан на несколько (больше одного) выпуклых многоугольников с попарно различным числом сторон.
Докажите, что среди них есть треугольник.

Прислать комментарий     Решение

Задача 98459

Темы:   [ Разные задачи на разрезания ]
[ Подсчет двумя способами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

Внутри прямоугольного листа бумаги вырезали n прямоугольных дыр со сторонами, параллельными краям листа. На какое наименьшее число прямоугольных частей можно гарантированно разрезать этот дырявый лист? (Дыры не перекрываются и не соприкасаются.)

Прислать комментарий     Решение

Задача 79511

Темы:   [ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
[ Вспомогательная раскраска ]
Сложность: 4+
Классы: 9

Школьник хочет вырезать из квадрата размером 2n×2n наибольшее количество прямоугольников размером 1×(n + 1). Найти это количество для каждого натурального значения n.
Прислать комментарий     Решение


Задача 58254

Тема:   [ Разные задачи на разрезания ]
Сложность: 4+
Классы: 8,9

Можно ли невыпуклый четырехугольник разрезать двумя прямыми на 6 частей?
Прислать комментарий     Решение


Задача 107627

Темы:   [ Разные задачи на разрезания ]
[ Полуинварианты ]
[ Принцип Дирихле (прочее) ]
[ Выпуклые многоугольники ]
[ Плоскость, разрезанная прямыми ]
Сложность: 5-
Классы: 6,7,8,9,10,11

Петя разрезал прямоугольный лист бумаги по прямой. Затем он разрезал по прямой один из получившихся кусков. Затем он проделал то же самое с одним из трёх получившихся кусков и т.д. Докажите, что после достаточного количества разрезаний можно будет выбрать среди получившихся кусков 100 многоугольников с одинаковым числом вершин (например, 100 треугольников или 100 четырёхугольников и т.д.).
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .