Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Сходимость итерационного процесса. Предположим, что функция f (x) отображает отрезок [a;b] в себя, и на этом отрезке | f'(x)| $ \leqslant$ q < 1. Докажите, что уравнение f (x) = x имеет на отрезке [a;b] единственный корень x*. Докажите, что при решении этого уравнения методом итераций будут выполняться неравенства:

| xn + 1 - xn| $\displaystyle \leqslant$ | x1 - x0| . qn,    | x* - xn| $\displaystyle \leqslant$ | x1 - x0| . $\displaystyle {\frac{q^n}{1-q}}$.


Вниз   Решение


Найти последнюю цифру числа  71988 + 91988.

ВверхВниз   Решение


Доказать, что если расстояния между скрещивающимися рёбрами тетраэдра равны h1, h2, h3, то объём тетраэдра не меньше, чем h1h2h3/3.

ВверхВниз   Решение


В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$.

ВверхВниз   Решение


Внутри квадрата со стороной 1 расположено n2 точек. Докажите, что существует ломаная, содержащая все эти точки, длина которой не превосходит 2n.

ВверхВниз   Решение


Проекцией точки A из точки O на плоскость P называется точка A', в которой прямая OA пересекает плоскость P. Проекцией треугольника называется фигура, состоящая из всех проекций его точек. Какими фигурами может быть проекция треугольника, если точка O не лежит в его плоскости?

ВверхВниз   Решение


Точки P , Q , R и S расположены в пространстве так, что середины отрезков SQ и PR лежат на сфере радиуса a , а отрезки PS , PQ , QR и SR делятся сферой на три части в отношении 1:2:1 каждый. Найдите расстояние от точки P до прямой QR .

ВверхВниз   Решение


Докажите, что две прямые, параллельные третьей, параллельны между собой.

ВверхВниз   Решение


Циркулем и линейкой проведите через данную точку прямую, на которой три данные прямые высекают равные отрезки.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 58459

Тема:   [ Применение проективных преобразований прямой в задачах на построение ]
Сложность: 6
Классы: 10,11

Даны окружность, прямая и точки A, A', B, B', C, C', M, лежащие на этой прямой. Согласно задачам 30.1 и 30.3 существует единственное проективное преобразование данной прямой на себя, отображающее точки A, B, C соответственно в A', B', C'. Обозначим это преобразование через P. Постройте при помощи одной линейки а) точку P(M); б) неподвижные точки отображения P (задача Штейнера).
Прислать комментарий     Решение


Задача 58460

Тема:   [ Применение проективных преобразований прямой в задачах на построение ]
Сложность: 6
Классы: 10,11

Даны две прямые l1 и l2 и две точки A и B, не лежащие на этих прямых. Циркулем и линейкой постройте на прямой l1 такую точку X, чтобы прямые AX и BX высекали на прямой l2 отрезок, а) имеющий данную длину a; б) делящийся пополам в данной точке E прямой l2.
Прислать комментарий     Решение


Задача 58461

Тема:   [ Применение проективных преобразований прямой в задачах на построение ]
Сложность: 6+
Классы: 10,11

Точки A и B лежат на прямых a и b соответственно, а точка P не лежит ни на одной из этих прямых. Циркулем и линейкой проведите через P прямую, пересекающую прямые a и b в точках X и Y соответственно таких, что длины отрезков AX и BY имеют а) данное отношение; б) данное произведение.
Прислать комментарий     Решение


Задача 58462

Тема:   [ Применение проективных преобразований прямой в задачах на построение ]
Сложность: 6+
Классы: 10,11

Циркулем и линейкой проведите через данную точку прямую, на которой три данные прямые высекают равные отрезки.
Прислать комментарий     Решение


Задача 58463

Тема:   [ Применение проективных преобразований прямой в задачах на построение ]
Сложность: 6+
Классы: 10,11

Даны окружность S и две хорды AB и CD. Циркулем и линейкой постройте на окружности такую точку X, чтобы прямые AX и BX высекали на CD отрезок а) имеющий данную длину a; б) делящийся пополам в данной точке E хорды CD.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .