ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Каждое из рёбер полного графа с 6 вершинами покрашено в один из двух цветов.
Три гнома живут в разных домах на плоскости и ходят со скоростями 1, 2 и 3 км/ч соответственно. Какое место для ежедневных встреч нужно им выбрать, чтобы сумма времён, необходимых каждому из гномов на путь от своего дома до этого места (по прямой), была наименьшей?
Существует ли на плоскости конечный набор различных векторов
Последовательность {an} определяется правилами: a0 = 9, В круге проведены два диаметра AB и CD. Доказать, что если M — произвольная точка окружности, а P и Q — её проекции на диаметры AB и CD, то длина отрезка PQ не зависит от выбора точки M. В строчку выписано 10 целых чисел. Вторая строчка находится так: под каждым числом A первой строчки пишется число, равное количеству чисел первой строчки, которые больше A и при этом стоят правее A. По второй строчке аналогично строится третья строчка и т. д. Из спичек сложен клетчатый квадрат 9×9, сторона каждой клетки – одна спичка. Петя и Вася по очереди убирают по спичке, начинает Петя. Выиграет тот, после чьего хода не останется целых квадратиков 1×1. Кто может действовать так, чтобы обеспечить себе победу, как бы ни играл его соперник? На плоскости дано 100 окружностей, составляющих связную (то есть не распадающуюся на части) фигуру. а) Квадрат разрезан на равные прямоугольные треугольники с катетами 3 и 4 каждый. Докажите, что число треугольников чётно. б) Прямоугольник разрезан на равные прямоугольные треугольники с катетами 1 и 2 каждый. Докажите, что число треугольников чётно. В таблице На урок физкультуры пришло 12 детей, все разной силы. Учитель 10 раз делил их на две команды по 6 человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все 10 раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)? Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так, чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета, что эти четыре точки являются вершинами параллелограмма? Доказать, что если целое n > 1, то 11·2²·3³·...·nn < nn(n+1)/2.
|
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 171]
План города имеет схему, представляющую собой прямоугольник 5×10 клеток. На улицах введено одностороннее движение: разрешается ехать только вправо и вверх. Сколько есть различных маршрутов, ведущих из левого нижнего угла в правый верхний?
Известно, что в выпуклом n-угольнике (n > 3) никакие три диагонали не проходят через одну точку.
На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn
соответственно и проведены все отрезки вида AiBj
Параллелограмм пересекается двумя рядами прямых, параллельных его сторонам; каждый ряд состоит из m прямых.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 171]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке