ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В основании призмы ABCDABCD₁ лежит параллелограмм ABCD, AB = 8, а ∠BAD = π/3. Острые углы AAB и AAD равны между
собой, а угол между ребром AA и плоскостью основания призмы равен arcsin 
³⁄₇
. Все грани призмы касаются некоторой сферы.
Найдите ребро AD и угол между плоскостями AAB и ABC, а также расстояние от точки A до центра сферы.

Вниз   Решение


Ванна заполняется холодной водой за 6 минут 40 секунд, горячей – за 8 минут. Кроме того, если из полной ванны вынуть пробку, вода вытечет за 13 минут 20 секунд. Сколько времени понадобится, чтобы наполнить ванну полностью, при условии, что открыты оба крана, но ванна не заткнута пробкой?

ВверхВниз   Решение


Развертка боковой поверхности цилиндра есть квадрат со стороной 2 . Найдите объём цилиндра.

ВверхВниз   Решение


Из таблицы

выбраны a чисел так, что никакие два из выбранных чисел не стоят в одной строке или в одном столбце таблицы. Вычислить сумму выбранных чисел.

ВверхВниз   Решение


Имеется 100 камней. Два игрока берут по очереди от 1 до 5 камней. Проигрывает тот, кто берет последний камень.
Определите выигрышную стратегию первого игрока.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 285]      



Задача 35686

Темы:   [ Теория игр (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 8,9

В центре квадрата сидит волк, а в вершинах - сидят собаки. Волк может бегать по внутренности квадрата с максимальной скоростью $v$, а собаки - только по сторонам квадрата с максимальной скоростью $1,5v$. Известно, что волк задирает собаку, а две собаки задирают волка. Всегда ли волк сможет выбежать из квадрата?
Прислать комментарий     Решение


Задача 35715

Тема:   [ Выигрышные и проигрышные позиции ]
Сложность: 3
Классы: 8,9

Король стоит на поле a1 шахматной доски. За ход разрешается сдвинуть его на одну клетку вправо, или на одну клетку вверх, или на одну клетку вправо-вверх. Выигрывает тот, кто поставит короля на клетку h8. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 60681

Темы:   [ Теория игр (прочее) ]
[ Деление с остатком ]
Сложность: 3
Классы: 7,8,9

Имеется 100 камней. Два игрока берут по очереди от 1 до 5 камней. Проигрывает тот, кто берет последний камень.
Определите выигрышную стратегию первого игрока.

Прислать комментарий     Решение

Задача 66394

Темы:   [ Теория игр (прочее) ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 6,7

В ряд записаны всевозможные правильные несократимые дроби, знаменатели которых не больше ста. Маша и Света ставят знаки "+" или "–' перед любой дробью, перед которой знак еще не стоит. Они делают это по очереди, но известно, что Маше придётся сделать последний ход и вычислить результат действий. Если он получится целым, то Света даст ей шоколадку. Сможет ли Маша получить шоколадку независимо от действий Светы?
Прислать комментарий     Решение


Задача 67310

Темы:   [ Теория игр (прочее) ]
[ Свойства модуля. Неравенство треугольника ]
Сложность: 3
Классы: 8,9,10,11

Автор: Бутырин Б.

Петя и Вася играют на отрезке $[0; 1]$, в котором отмечены точки $0$ и $1$. Игроки ходят по очереди, начинает Петя. Каждый ход игрок отмечает ранее не отмеченную точку отрезка. Если после хода очередного игрока нашлись три последовательных отрезка между соседними отмеченными точками, из которых можно сложить треугольник, то сделавший такой ход игрок объявляется победителем, и игра заканчивается. Получится ли у Пети гарантированно победить?
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 285]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .