Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов?

Вниз   Решение


В равносторонний треугольник ABC вписан прямоугольник PQRS так, что основание прямоугольника RS лежит на стороне BC, а вершины P и Q соответственно на сторонах AB и AC. В каком отношении точка Q должна делить сторону AC, чтобы площадь прямоугольника PQRS составляла $ {\frac{45}{98}}$ площади треугольника ABC?

ВверхВниз   Решение


Докажите, что медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна отрезку, соединяющему середины катетов.

ВверхВниз   Решение


В прямоугольном треугольнике биссектриса острого угла делит катет на отрезки m и n  (m > n).  Найдите другой катет и гипотенузу.

ВверхВниз   Решение


Можно ли в каждую клетку таблицы 40×41 записать по целому числу так, чтобы число в каждой клетке равнялось количеству тех соседних с ней по стороне клеток, в которых написано такое же число?

ВверхВниз   Решение


Докажите, что при a, b, c имеет место неравенство  

ВверхВниз   Решение


На дуге BC описанной окружности равностороннего треугольника ABC взята точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что  1/PQ = 1/PB + 1/PC.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ.

ВверхВниз   Решение


Для каких n возможны равенства:   a)  φ(n) = n – 1;   б)  φ(2n) = 2φ(n);   в)  φ(nk) = nk–1φ(n)?

ВверхВниз   Решение


Найдите биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18.

ВверхВниз   Решение


Какое наибольшее количество различных целых чисел можно выписать в ряд так, чтобы сумма каждых 11 подряд идущих чисел равнялась 100 или 101?

ВверхВниз   Решение


Решите уравнения   а)  φ(x) = x/2;   б)  φ(x) = x/3;    φ(x) = x/4.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 79]      



Задача 60760

Темы:   [ Функция Эйлера ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 9,10,11

Функция Эйлера  φ(n)  определяется как количество чисел от 1 до n, взаимно простых с n.
Основным свойством функции Эйлера является её мультипликативность.
Для взаимно простых a и b рассмотрим таблицу

В каких столбцах этой таблицы находятся числа взаимно простые с числом b?
Сколько в каждом из этих столбцов чисел взаимно простых с a?
Докажите мультипликативность функции Эйлера, ответив на эти вопросы.

Прислать комментарий     Решение

Задача 60765

Темы:   [ Функция Эйлера ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

Решите уравнения   а)  φ(x) = 2;   б)  φ(x) = 8;   в)  φ(x) = 12;   г)  φ(x) = 14.

Прислать комментарий     Решение

Задача 60767

Темы:   [ Функция Эйлера ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

Решите уравнения   а)  φ(x) = x/2;   б)  φ(x) = x/3;    φ(x) = x/4.

Прислать комментарий     Решение

Задача 60768

Темы:   [ Функция Эйлера ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

Для каких n возможны равенства:   a)  φ(n) = n – 1;   б)  φ(2n) = 2φ(n);   в)  φ(nk) = nk–1φ(n)?

Прислать комментарий     Решение

Задача 60769

Темы:   [ Функция Эйлера ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

Решите уравнения   а)  φ(5x) = 100;   б)  φ(7x) = 294;   в)  φ(3x5y) = 600.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .