ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

На плоскости даны две окружности одна внутри другой. Построить такую точку O, что одна окружность получается из другой гомотетией относительно точки O (другими словами – чтобы растяжение плоскости от точки O с некоторым коэффициентом переводило одну окружность в другую).

Вниз   Решение


Длины сторон треугольника ABC не превышают 1.
Докажите, что  p(1 – 2Rr) ≥ 1,  где p – полупериметр, R и r – радиусы описанной и вписанной окружностей треугольника ABC.

ВверхВниз   Решение


Из всех выпуклых многоугольников, у которых одна сторона равна a и сумма внешних углов при вершинах, не прилегающих к этой стороне, равна 120o, выбрать многоугольник наибольшей площади.

ВверхВниз   Решение


В стране N  1998 городов, и из каждого осуществляются беспосадочные перелеты в три других города (все авиарейсы двусторонние). Известно, что из каждого города, сделав несколько пересадок, можно долететь до любого другого. Министерство Безопасности хочет объявить закрытыми 200 городов, никакие два из которых не соединены авиалинией. Докажите, что это можно сделать так, чтобы можно было долететь из каждого незакрытого города в любой другой, не делая пересадок в закрытых городах.

ВверхВниз   Решение


Внутренняя точка A шара радиуса r соединена с поверхностью шара тремя отрезками прямых, имеющими длину l и проведёнными под углом α друг к другу. Найдите расстояние точки A от центра шара.

ВверхВниз   Решение


Вершины треугольника соединены с центром вписанной окружности. Проведёнными отрезками площадь треугольника разделилась на три части, равные 28, 60 и 80. Найдите стороны треугольника.

ВверхВниз   Решение


Правильный 2n-угольник M1 со стороной a лежит внутри правильного 2n-угольника M2 со стороной 2a. Докажите, что многоугольник M1 содержит центр многоугольника M2.

ВверхВниз   Решение


Внутри выпуклого многоугольника  A1...An взята точка O. Пусть $ \alpha_{k}^{}$ — величина угла при вершине  Ak, xk = OAk, dk — расстояние от точки O до прямой  AkAk + 1. Докажите, что  $ \sum$xksin($ \alpha_{k}^{}$/2) $ \geq$ $ \sum$dk и  $ \sum$xkcos($ \alpha_{k}^{}$/2) $ \geq$ p, где p — полупериметр многоугольника.

ВверхВниз   Решение


Докажите, что если стороны пятиугольника в порядке обхода равны 4, 6, 8, 7 и 9, то его стороны не могут касаться одной окружности.

ВверхВниз   Решение


Все считали, что Дракон был однооким, двуухим, треххвостым, четырехлапым и пятииглым. На самом деле, только четыре из этих определений выстраиваются в определенную закономерность, а одно — лишнее. Какое?

ВверхВниз   Решение


Натуральные числа m1, ..., mn попарно взаимно просты. Докажите, что число  x = (m2...mn)φ(m1)  является решением системы
    x ≡ 1 (mod m1),
    x ≡ 0 (mod m2),
        ...
    x ≡ 0 (mod mn).

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 60782

Тема:   [ Теорема Эйлера ]
Сложность: 3+
Классы: 9,10,11

При помощи теоремы Эйлера найдите число x, удовлетворяющее сравнению  ax + b ≡ 0 (mod m),  где  (a, m) = 1.

Прислать комментарий     Решение

Задача 60787

Темы:   [ Теорема Эйлера ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Найдите все целые числа a, для которых число  a10 + 1  делится на 10.

Прислать комментарий     Решение

Задача 60823

Темы:   [ Теорема Эйлера ]
[ Китайская теорема об остатках ]
Сложность: 3+
Классы: 9,10,11

Натуральные числа m1, ..., mn попарно взаимно просты. Докажите, что число  x = (m2...mn)φ(m1)  является решением системы
    x ≡ 1 (mod m1),
    x ≡ 0 (mod m2),
        ...
    x ≡ 0 (mod mn).

Прислать комментарий     Решение

Задача 60877

Темы:   [ Теорема Эйлера ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  (m, 10) = 1,  то существует репьюнит En, делящийся на m. Будет ли их бесконечно много?

Прислать комментарий     Решение

Задача 60785

Темы:   [ Теорема Эйлера ]
[ Произведения и факториалы ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при любом нечётном n число  2n! – 1  делится на n.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .