|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На концах клетчатой полоски 1 × 20 стоит по шашке. За ход разрешается сдвинуть любую шашку в направлении другой на одну или на две клетки. Перепрыгивать шашкой через шашку нельзя. Проигрывает тот, кто не может сделать ход. Дана правильная четырёхугольная пирамида SABCD ( S – вершина) со стороной основания a и боковым ребром b ( b > a ). Сфера с центром в точке O лежит над плоскостью основания ABCD , касается этой плоскости в точке A и, кроме того, касается бокового ребра SB . Найдите объём пирамиды OABCD . Из произвольной точки M, лежащей внутри данного угла с вершиной A, опущены перпендикуляры MP и MQ на стороны угла. Из точки A опущен перпендикуляр AK на отрезок PQ. Докажите, что Докажите, что при x≠πn (n– целое) sin x и cos x рациональны тогда и только тогда, когда число tg |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 420]
Функция f(x) определена для всех x,
кроме 1, и удовлетворяет равенству:
Функция f(x) определена на положительной полуоси и принимает только положительные значения. Известно, что f(1) + f(2) = 10 и
Решите неравенство: [x]·{x} < x – 1.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 420] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|