|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Найти все решения системы уравнений удовлетворяющие условиям 0 Пусть a и b – два положительных числа, причём a < b. Построим по этим числам две последовательности {an} и {bn} по правилам: a0 = a, b0 = b, an+1 =
Докажите, что обе эти последовательности имеют один и тот же предел. Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается μ(a, b). Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена f(x) = anxn + ... + a1x + a0? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 66]
Существуют ли два одночлена, произведение которых равно –12а4b², а сумма является одночленом с коэффициентом 1?
Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена f(x) = anxn + ... + a1x + a0?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 66] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|