ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть x1 < x2 < ... < xn – действительные числа. Постройте многочлены f1(x), f2(x), ..., fn(x) степени n – 1, которые удовлетворяют условиям fi(xi) = 1 и fi(xj) = 0 при i ≠ j (i, j = 1, 2, ..., n). Решение |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 964]
Дан многочлен с целыми коэффициентами. Если в него вместо неизвестного подставить 2 или 3, то получаются числа, кратные 6.
При каких p и q уравнению x² + px + q = 0 удовлетворяют два различных числа 2p и p + q?
Каким точкам фазовой плоскости соответствуют квадратные трёхчлены, не имеющие корней?
При каких A и B многочлен Axn+1 + Bxn + 1 имеет число x = 1 не менее чем двукратным корнем?
Пусть x1 < x2 < ... < xn – действительные числа. Постройте многочлены f1(x), f2(x), ..., fn(x) степени n – 1, которые удовлетворяют условиям fi(xi) = 1 и fi(xj) = 0 при i ≠ j (i, j = 1, 2, ..., n).
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 964] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|