Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 420]
|
|
|
Сложность: 3+ Классы: 10,11
|
Метод Ньютона (см. задачу
9.77) не всегда позволяет приблизиться
к корню уравнения
f (
x) = 0. Для многочлена
f (
x) =
x(
x - 1)(
x + 1)
найдите начальное условие
x0 такое, что
f (
x0)
x0 и
x2 =
x0.
|
|
|
Сложность: 3+ Классы: 10,11
|
Неравенство
Иенсена. Докажите, что если функция
f (
x) выпукла вверх на
отрезке [
a;
b], то для любых различных точек
x1,
x2,
...,
xn (
n 
2) из [
a;
b] и любых положительных

,

, ...,

таких, что

+

+...+

= 1, выполняется неравенство:
f (
x1 +...+
xn) >
f (
x1) +...+
f (
xn).
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Каждая из функций $f(x)$ и $g(x)$ определена на всей числовой прямой и не является строго монотонной. Может ли быть, что и их сумма, и их разность строго монотонны на всей числовой прямой?
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Существует ли такое положительное число $x > 1$, что $$\{x\} > \{x^2\} > \{x^3\} > \ldots > \{x^{100}\}?$$
(Здесь $\{x\}$ — дробная часть числа $x$, то есть разность между $x$ и ближайшим целым числом, не превосходящим $x$.)
Рассматривается функция
y =
f (
x), определённая на всём множестве действительных чисел и удовлетворяющая для некоторого числа
k ≠ 0 соотношению
f (
x +
k)
. (1 −
f (
x)) = 1 +
f (
x). Доказать, что
f (
x) — периодическая функция.
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 420]