Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 61]
|
|
Сложность: 3 Классы: 6,7,8,9,10,11
|
Василий Петров выполняет задание по английскому языку. В этом задании есть 10 английских выражений и их переводы на русский в случайном порядке. Нужно установить верные соответствия между выражениями и их переводами. За каждое правильно установленное соответствие даётся 1 балл. Таким образом, можно получить от 0 до 10 баллов. Вася ничего не знает, поэтому выбирает варианты наугад. Найдите вероятность того, что он получит ровно 9 баллов.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Докажите, что если a1 ≥ a2 ≥ ... ≥ an, b1 ≥ b2 ≥ ... ≥ bn, то наибольшая из сумм вида a1bk1 + a2bk2 + ... + anbkn
(k1, k2, ..., kn – перестановка чисел
1, 2, ..., n), это сумма a1b1 + a2b2 + ... + anbn, а наименьшая – сумма a1bn + a2bn–1 + ... + anb1.
|
|
Сложность: 3+ Классы: 8,9,10
|
В строку выписаны 40 знаков: 20 крестиков и 20 ноликов. За один ход можно поменять местами любые два соседних знака. За какое наименьшее количество ходов можно гарантированно добиться того, чтобы какие-то 20 стоящих подряд знаков оказались крестиками?
100 идущих подряд натуральных чисел отсортировали по возрастанию суммы цифр, а числа с одинаковой суммой цифр – просто по возрастанию. Могли ли числа 2010 и 2011 оказаться рядом?
|
|
Сложность: 3+ Классы: 8,9,10
|
Двое играют в следующую игру: первый выписывает в ряд по своему желанию буквы А или Б (слева направо, одну за другой; по одной букве за ход), а второй после каждого хода первого меняет местами любые две из выписанных букв или ничего не меняет (это тоже считается ходом). После того, как оба игрока сделают по 1999 ходов, игра заканчивается. Может ли второй играть так, чтобы при любых действиях первого игрока в результате получился палиндром (то есть слово, которое читается одинаково слева направо и справа налево)?
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 61]