ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите неравенство Чебышёва     при условии, что   a1a2 ≥ ... ≥ an   и
b1b2 ≥ ... ≥ bn.

   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 590]      



Задача 61386

 [Неравенство Чебышёва]
Темы:   [ Классические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10,11

Докажите неравенство Чебышёва     при условии, что   a1a2 ≥ ... ≥ an   и
b1b2 ≥ ... ≥ bn.

Прислать комментарий     Решение

Задача 61396

Темы:   [ Алгебраические неравенства (прочее) ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 10,11

Докажите, что для любых натуральных m и n хотя бы одно из чисел    не больше  .

Прислать комментарий     Решение

Задача 61423

Темы:   [ Алгебраические неравенства (прочее) ]
[ Симметрические многочлены ]
[ Отношение порядка ]
Сложность: 3+
Классы: 9,10,11

Пусть  Tα(x, y, z) ≥ Tβ(x, y, z)  для всех неотрицательных x, y, z. Докажите, что  

Определение многочленов Tα смотри в задаче 61417, про показатели смотри в справочнике.

Прислать комментарий     Решение

Задача 61427

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 10,11

Докажите неравенства из задачи 61387 при помощи неравенства Мюрхеда (задача 61424).
Как будут выглядеть диаграммы Юнга для соответствующих функций?

Прислать комментарий     Решение

Задача 64328

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 7,8

Известно, что а, b и c – различные составные натуральные числа, но каждое из них не делится ни на одно из целых чисел от 2 до 100 включительно. Докажите, что если эти числа – наименьшие из возможных, то их произведение abc является кубом натурального числа.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .