ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Используя результат задачи 61403, докажите неравенства:
в) где b1 + ... + bn = 1. |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 200]
Докажите, что пересечение трёх прямых круговых цилиндров с радиусами 1, оси которых попарно взаимно перпендикулярны (но не обязательно пересекаются), содержится в некотором шаре радиуса
Пусть h1, h2, h3 – высоты треугольника, r – радиус вписанной окружности. Докажите, что h1 + h2 + h3 ≥ 9r.
Докажите неравенство (1 + x1)...(1 + xn) ≥ 2n, где x1...xn = 1.
Используя результат задачи 61403, докажите неравенства:
в) где b1 + ... + bn = 1.
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 200] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|