Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

При всех значениях параметра a найдите число действительных корней уравнения  x³ – x – a = 0.

Вниз   Решение


Автор: Фольклор

Можно ли подобрать такие два натуральных числа X и Y, что Y получается из X перестановкой цифр, и  X + Y = 9...9  (1111 девяток)?

ВверхВниз   Решение


Назовём натуральное число n удобным, если  n² + 1  делится на 1000001. Докажите, что среди чисел 1, 2, ..., 1000000 чётное число удобных.

ВверхВниз   Решение


Центр O окружности радиуса 3 лежит на гипотенузе AC прямоугольного треугольника ABC. Катеты треугольника касаются окружности.
Найдите площадь треугольника ABC, если известно, что  OC = 5.

ВверхВниз   Решение


В треугольнике ABC угол B — прямой, величина угол C равен $ \alpha$ ( $ \alpha$ > $ {\frac{\pi}{4}}$), точка D — середина гипотенузы. Точка A1 симметрична точке A относительно прямой BD. Найдите угол BA1C.

ВверхВниз   Решение


  Определение. Пусть  α = (k, j, i)  – набор целых неотрицательных чисел,  k ≥ j ≥ i.  Через Tα(x, y, z) будем обозначать симметрический многочлен от трёх переменных, который есть по определению сумма одночленов вида xaybzc по всем шести перестановкам  (a, b, c)  набора  (k, j, i).
  Аналогично определяются многочлены Tα для произвольного количества переменных/чисел в наборе α.
  Запишите через многочлены вида Tα неравенства
  а)  x4y + y4x ≥ x³y² + x²y³;
  б)  x³yz + y³xz + z³xy ≥ x²y²z + y²z²x + z²x²y.

Вверх   Решение

Задачи

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 970]      



Задача 111255

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Квадратный трехчлен (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 2+
Классы: 7,8,9,10

Графики функций  у = х² + ах + b  и  у = х² + сх + d  пересекаются в точке с координатами  (1, 1).  Сравните  а5 + d6  и  c6b5.

Прислать комментарий     Решение

Задача 116534

Темы:   [ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Известно, что x, y и z – целые числа и  xy + yz + zx = 1.  Докажите, что число  (1 + x²)(1 + y²)(1 + z²)  является квадратом натурального числа.

Прислать комментарий     Решение

Задача 116617

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
Сложность: 2+
Классы: 9,10,11

Автор: Фольклор

Найдите все пары  (p, q)  простых чисел, разность пятых степеней которых также является простым числом.

Прислать комментарий     Решение

Задача 102793

Темы:   [ Арифметические действия. Числовые тождества ]
[ Формулы сокращенного умножения ]
Сложность: 2+
Классы: 7,8,9

Целое число. Доказать, что если - целое число, то - тоже целое число.
Прислать комментарий     Решение


Задача 32118

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3-
Классы: 7,8,9

Из квадратного листа бумаги в клетку, содержащего целое число клеток, вырезали квадрат, содержащий целое число клеток так, что осталось 124 клетки. Сколько клеток мог содержать первоначальный лист бумаги?

Прислать комментарий     Решение

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 970]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .