ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На каждой из 2013 карточек написано по числу, все эти 2013 чисел различны. Карточки перевёрнуты числами вниз. За один ход разрешается указать на десять карточек, и в ответ сообщат одно из чисел, написанных на них (неизвестно, какое).
Для какого наибольшего t гарантированно удастся найти t карточек, про которые известно, какое число написано на каждой из них?

   Решение

Задачи

Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 383]      



Задача 109755

Темы:   [ Ориентированные графы ]
[ Вспомогательная раскраска (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Автор: Пастор А.

В городе несколько площадей. Некоторые пары площадей соединены улицами с односторонним движением так, что с каждой площади можно выехать ровно по двум улицам. Докажите, что город можно разделить на 1014 районов так, чтобы улицами соединялись только площади из разных районов, и для каждых двух районов все соединяющие их улицы были направлены одинаково (либо все из первого района во второй, либо наоборот).

Прислать комментарий     Решение

Задача 110181

Темы:   [ Раскраски ]
[ Задачи с ограничениями ]
[ Ориентированные графы ]
[ Перестановки и подстановки (прочее) ]
[ Отношение порядка ]
Сложность: 5-

Даны  N ≥ 3  точек, занумерованных числами 1, 2, ..., N. Каждые две точки соединены стрелкой от меньшего номера к большему. Раскраску всех стрелок в красный и синий цвета назовем однотонной, если нет двух таких точек A и B, что от A до B можно добраться и по красным стрелкам, и по синим. Найдите количество однотонных раскрасок.

Прислать комментарий     Решение

Задача 116766

Темы:   [ Многочлены (прочее) ]
[ Процессы и операции ]
[ Ориентированные графы ]
[ Подсчет двумя способами ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 10,11

Изначально на доске были написаны одночленs  1, x, x², ..., xn.  Договорившись заранее, k мальчиков каждую минуту одновременно вычисляли каждый сумму каких-то двух многочленов, написанных на доске, и результат дописывали на доску. Через m минут на доске были написаны, среди прочих, многочлены  S1 = 1 + x,  S2 = 1 + x + x²,  S3 = 1 + x + x² + x3,  ...,  Sn = 1 + x + x² + ... + xn.  Докажите, что  

Прислать комментарий     Решение

Задача 64362

Темы:   [ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Степень вершины ]
[ Индукция (прочее) ]
[ Кооперативные алгоритмы ]
[ Оценка + пример ]
Сложность: 5
Классы: 10,11

На каждой из 2013 карточек написано по числу, все эти 2013 чисел различны. Карточки перевёрнуты числами вниз. За один ход разрешается указать на десять карточек, и в ответ сообщат одно из чисел, написанных на них (неизвестно, какое).
Для какого наибольшего t гарантированно удастся найти t карточек, про которые известно, какое число написано на каждой из них?

Прислать комментарий     Решение

Задача 67205

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Классические неравенства ]
[ Степень вершины ]
Сложность: 5
Классы: 10,11

В выпуклом многограннике обозначим через B, P и T соответственно число вершин, рёбер и максимальное число треугольных граней, которые имеют общую вершину. Докажите, что {$\text{В}\sqrt{\text{Р}+\text{Т}}\geqslant 2\text{Р}$}.

Например, для тетраэдра ($\text{В}=4$, $\text{Р}=6$, $\text{Т}=3$) выполняется равенство, а для треугольной призмы ($\text{В}=6$, $\text{Р}=9$, $\text{Т}=1$) или куба ($\text{В}=8$, $\text{Р}=12$, $\text{Т}=0$) имеет место строгое неравенство.
Прислать комментарий     Решение


Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .