ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли выпуклый четырёхугольник, у которого каждая диагональ не больше, чем любая сторона?

   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 289]      



Задача 64420

Темы:   [ Четырехугольник: вычисления, метрические соотношения. ]
[ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 9,10

Существует ли выпуклый четырёхугольник, у которого каждая диагональ не больше, чем любая сторона?

Прислать комментарий     Решение

Задача 116203

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тетраэдр (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Трехгранные и многогранные углы (прочее) ]
[ Теорема косинусов ]
Сложность: 3
Классы: 10,11

Шесть отрезков таковы, что из любых трех можно составить треугольник. Bерно ли, что из этих отрезков можно составить тетраэдр?

Прислать комментарий     Решение

Задача 52580

Темы:   [ Круг, сектор, сегмент и проч. ]
[ Вписанный угол равен половине центрального ]
[ Сумма длин диагоналей четырехугольника ]
Сложность: 3+
Классы: 8,9

На сторонах OA и OB четверти AOB круга построены как на диаметрах полуокружности ACO и OCB, пересекающиеся в точке C. Докажите, что:

1) прямая OC делит угол AOB пополам;

2) точки A, C и B лежат на одной прямой;

3) дуги AC, CO и CB равны между собой.

Прислать комментарий     Решение


Задача 53346

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Признаки подобия ]
[ Неравенство треугольника ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Верно ли утверждение: "Если две стороны и три угла одного треугольника равны двум сторонам и трём углам другого треугольника, то такие треугольники равны"?

Прислать комментарий     Решение

Задача 54794

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема косинусов ]
[ Неравенство треугольника (прочее) ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

В трапеции с основаниями 3 и 4 диагональ равна 6 и является биссектрисой одного из углов. Может ли эта трапеция быть равнобедренной?

Прислать комментарий     Решение

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .