ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC биссектриса угла A пересекает сторону BC в точке D; прямая, проведённая через точку D параллельно CA, пересекает сторону AB в точке E; прямая, проведённая через точку E параллельно BC, пересекает сторону AC в F. Докажите, что EA = FC. Есть 20 карточек, у каждой из которых на двух сторонах написано по числу. При этом все числа от 1 до 20 написаны по два раза. В остроугольном треугольнике $ABC$ проведена биссектриса $AL$. На продолжении отрезка $LA$ за точку $A$ выбрана точка $K$ так, что $AK = AL$. Описанные окружности треугольников $BLK$ и $CLK$ пересекают отрезки $AC$ и $AB$ в точках $P$ и $Q$ соответственно. Докажите, что прямые $PQ$ и $BC$ параллельны. Биссектриса угла параллелограмма делит сторону параллелограмма на отрезки, равные a и b. Найдите стороны параллелограмма.
Из точки A к окружности радиусом R проводится касательная AM (M — точка касания). Секущая, проходящая через точку A, пересекает окружность в точках K и L, причём L — середина отрезка AK, а угол AMK равен 60o. Найдите площадь треугольника AMK.
Два угла прямоугольного листа бумаги согнули так, как показано на рисунке. Противоположная сторона при этом оказалась разделённой на три равные части. Докажите, что закрашенный треугольник – равносторонний. |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 993]
В квадрате АВСD со стороной 1 точка F – середина стороны
ВС, Е – основание перпендикуляра, опущенного из вершины А на DF.
Два угла прямоугольного листа бумаги согнули так, как показано на рисунке. Противоположная сторона при этом оказалась разделённой на три равные части. Докажите, что закрашенный треугольник – равносторонний.
На сторонах BC и CD квадрата ABCD отмечены точки M и N соответственно так, что лучи AM и AN делят угол BAD на три равные части. ME – высота треугольника MAN. Найдите угол EDN.
Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)?
Есть 99 палочек с длинами 1, 2, 3, ..., 99. Можно ли из них сложить контур какого-нибудь прямоугольника?
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 993]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке