ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

При каком наименьшем n существует n -угольник, который можно разрезать на треугольник, четырехугольник, ..., 2006-угольник?

Вниз   Решение


Каждый из двух правильных многогранников P и Q разрезали плоскостью на две части. Одну из частей P и одну из частей Q приложили друг к другу по плоскости разреза. Может ли получиться правильный многогранник, не равный ни одному из исходных, и если да, то сколько у него может быть граней?

Вверх   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 149]      



Задача 78562

Темы:   [ Подсчет двумя способами ]
[ Разные задачи на разрезания ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 10,11

Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?
Прислать комментарий     Решение


Задача 61310

Темы:   [ Итерации ]
[ Разные задачи на разрезания ]
Сложность: 4-
Классы: 10,11

Что останется от прямоугольника? Золотой прямоугольник — это такой прямоугольник, стороны a и b которого находятся в пропорции золотого сечения, то есть удовлетворяют равенству a : b = b : (a - b). Представим, что такой прямоугольник вырезан из бумаги и лежит на столе, обращенный к нам своей более длинной стороной. Отсечем по левую сторону прямоугольника наибольший квадрат, который можно из него вырезать; остаток будет снова золотым прямоугольником. Далее становимся по левую сторону стола так, чтобы снова иметь перед собой более длинную сторону и поступаем с новым прямоугольником так же, как и с предыдущим. Таким образом обходим стол вокруг по направлению хода часовой стрелки и по очереди отсекаем квадраты. Каждая точка прямоугольника за исключением одной, будет раньше или позже отсечена. Определите положение этой исключительной точки.

Прислать комментарий     Решение

Задача 110785

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Разные задачи на разрезания ]
[ Произвольные многоугольники ]
Сложность: 4-
Классы: 7,8,9

При каком наименьшем n существует n -угольник, который можно разрезать на треугольник, четырехугольник, ..., 2006-угольник?
Прислать комментарий     Решение


Задача 64705

Темы:   [ Правильные многоугольники ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9

Каждый из двух правильных многоугольников P и Q разрезали прямой на две части. Одну из частей P и одну из частей Q сложили друг с другом по линии разреза. Может ли получиться правильный многоугольник, не равный ни одному из исходных, и если да, то сколько у него может быть сторон?

Прислать комментарий     Решение

Задача 64748

Темы:   [ Правильные многогранники (прочее) ]
[ Разные задачи на разрезания ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Каждый из двух правильных многогранников P и Q разрезали плоскостью на две части. Одну из частей P и одну из частей Q приложили друг к другу по плоскости разреза. Может ли получиться правильный многогранник, не равный ни одному из исходных, и если да, то сколько у него может быть граней?

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .