ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

При каких значениях x и y верно равенство  x² + (1 – y)² + (x – y)² = ⅓?

   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 258]      



Задача 60620

 [Теорема Валена]
Темы:   [ Цепные (непрерывные) дроби ]
[ Приближения чисел ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

Докажите, что если  Pn/Qn  (n ≥ 1)  – подходящая дробь к числу α, то имеет место по крайней мере одно из неравенств     или     Получите отсюда теорему Валена: для любого α найдётся бесконечно много таких дробей p/q, что  |α – p/q| < 1/2q2.

Прислать комментарий     Решение

Задача 60943

Темы:   [ Исследование квадратного трехчлена ]
[ Тождественные преобразования ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10

Докажите, что корни уравнения
  а)  (x – a)(x – b) + (x – b)(x – c) + (x – a)(x – c) = 0;
  б)  c(x – a)(x – b) + a(x – b)(x – c) + b(x – a)(x – c) = 0
всегда вещественные.

Прислать комментарий     Решение

Задача 64963

Темы:   [ Алгебраические уравнения и системы уравнений (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 10,11

При каких значениях x и y верно равенство  x² + (1 – y)² + (x – y)² = ⅓?

Прислать комментарий     Решение

Задача 65285

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Ася и Вася вырезают прямоугольники из клетчатой бумаги. Вася ленивый; он кидает игральную кость один раз и вырезает квадрат, сторона которого равна выпавшему числу очков. Ася кидает кость дважды и вырезает прямоугольник с длиной и шириной, равными выпавшим числам. У кого математическое ожидание площади прямоугольника больше?

Прислать комментарий     Решение

Задача 65294

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
[ Неравенство Коши ]
[ Средние величины ]
Сложность: 3+
Классы: 9,10,11

В окружность вписан неправильный многоугольник. Если вершина A разбивает дугу, заключенную между двумя другими вершинами, на две неравные части, то такая вершина A называется неустойчивой. Каждую секунду какая-нибудь неустойчивая вершина перепрыгивает в середину своей дуги. В результате каждую секунду образуется новый многоугольник. Докажите, что сколько бы секунд ни прошло, многоугольник никогда не будет равным исходному.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 258]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .