ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Около остроугольного треугольника ABC описана окружность. На её меньших дугах BC , AC и AB взяты точки A1 , B1 и C1 соответственно. Точки A2 , B2 и C2 – ортоцентры треугольников соответственно BA1C , AB1C и AC1B . Докажите, что описанные окружности треугольников BA2C , AB2C и AC2B пересекаются в одной точке. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то плоскости параллельны. Рассмотрим последовательность, первые два члена которой равны 1 и 2 соответственно, а каждый следующий член – это наименьшее натуральное число, которое еще не встретилось в последовательности и которое не взаимно просто с предыдущим членом последовательности. Докажите, что каждое натуральное число входит в эту последовательность. Каждое звено несамопересекающейся ломаной состоит из нечётного числа сторон клеток квадрата 100×100, соседние звенья перпендикулярны. Четырехугольник имеет ось симметрии. Докажите, что
этот четырехугольник либо является равнобедренной трапецией,
либо симметричен относительно диагонали.
Докажите, что в прямоугольном треугольнике медиана, проведённая к гипотенузе, равна её половине. В пирамиде ABCD площадь грани ABC в четыре раза больше площади грани ABD . На ребре CD взята точка M , причём CM:MD = 2 . Через точку M проведены плоскости, параллельные граням ABC и ABD . Найдите отношение площадей получившихся сечений. Докажите, что в десятичной записи чисел 19902003 и 19902003 + 22003 одинаковое число цифр. В треугольнике АВС М – точка пересечения медиан, О – центр вписанной окружности.
Стороны пятиугольника в порядке обхода равны 5, 6, 7, 8 и 9. Стороны этого пятиугольника касаются одной окружности. На какие отрезки точка касания со стороной, равной 5, делит эту сторону?
Дан треугольник ABC, в котором ∠A = α, ∠B = β. На стороне AB взята точка D, а на стороне AC – точка M, причём CD – биссектриса треугольника ABC, Дан прямоугольный треугольник ABC с прямым углом C. Пусть BK – биссектриса этого треугольника. Описанная окружность треугольника AKB пересекает вторично сторону BC в точке L. Докажите, что CB + CL = AB. |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]
В выпуклом четырёхугольнике семь из восьми отрезков, соединяющих вершины с серединами противоположных сторон, равны.
Докажите, что в прямоугольном треугольнике медиана, проведённая к гипотенузе, равна её половине.
Окружность, вписанная в прямоугольный треугольник ABC, касается катетов AC и BC в точках B1 и A1, а гипотенузы – в точке C1. Прямые C1A1 и C1B1 пересекают CA и CB соответственно в точках B0 и A0. Докажите, что AB0 = BA0.
Дан прямоугольный треугольник ABC с прямым углом C. Пусть BK – биссектриса этого треугольника. Описанная окружность треугольника AKB пересекает вторично сторону BC в точке L. Докажите, что CB + CL = AB.
Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке