ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости нарисованы 100 кругов, каждые два из которых имеют общую точку (возможно, граничную).
Докажите, что найдётся точка, принадлежащая не менее чем 15 кругам.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 65370

Темы:   [ Пересекающиеся окружности ]
[ Системы отрезков, прямых и окружностей ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Теорема косинусов ]
[ Квадратные неравенства и системы неравенств ]
Сложность: 4
Классы: 9,10,11

На плоскости нарисованы 100 кругов, каждые два из которых имеют общую точку (возможно, граничную).
Докажите, что найдётся точка, принадлежащая не менее чем 15 кругам.

Прислать комментарий     Решение

Задача 58268

Темы:   [ Покрытия ]
[ Системы отрезков, прямых и окружностей ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 5-
Классы: 8,9

Отрезок длиной 1 покрыт несколькими лежащими на нем отрезками. Докажите, что среди них можно выбрать несколько попарно непересекающихся отрезков, сумма длин которых не меньше 0,5.
Прислать комментарий     Решение


Задача 60323

Темы:   [ Плоскость, разрезанная прямыми ]
[ Индукция в геометрии ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 3
Классы: 8,9,10

На сколько частей делят плоскость n прямых общего положения, то есть таких, что никакие две не параллельны и никакие три не проходят через одну точку?
Прислать комментарий     Решение


Задача 60324

Темы:   [ Плоскость, разрезанная прямыми ]
[ Индукция в геометрии ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 3
Классы: 8,9,10

На плоскости проведены n окружностей так, что любые две из них пересекаются в паре точек, и никакие три не проходят через одну точку. На сколько частей делят плоскость эти окружности?

Прислать комментарий     Решение

Задача 79342

Темы:   [ Перпендикулярные прямые в пространстве ]
[ Параллельность прямых и плоскостей ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 3+
Классы: 10,11

В пространстве расположено n отрезков, никакие три из которых не параллельны одной плоскости. Для любых двух отрезков прямая, соединяющая их середины, перпендикулярна обоим отрезкам. При каком наибольшем n это возможно?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .