Страница:
<< 102 103 104 105
106 107 108 >> [Всего задач: 603]
|
|
Сложность: 3+ Классы: 10,11
|
В прямоугольном неравнобедренном треугольнике ABC точка M – середина гипотенузы AC, точки Ha,
Hc – ортоцентры треугольников ABM, CBM соответственно, прямые AHc, CHa пересекаются в точке K. Докажите, что ∠MBK = 90°.
|
|
Сложность: 3+ Классы: 7,8,9
|
Внутри ромба АВСD выбрана точка N так, что треугольник ВСN – равносторонний. Биссектриса BL треугольника ABN пересекает диагональ АС в точке K. Докажите, что точки K,
N и D лежат на одной прямой.
В треугольнике АВС АС = 8, ВС = 5. Прямая, параллельная биссектрисе внешнего угла С, проходит через середину стороны АВ и точку Е на стороне АС. Найдите АЕ.
Дана равнобокая трапеция ABCD с основаниями BC и AD. В треугольники ABC и ABD вписаны окружности с центрами O1 и O2.
Докажите, что прямая O1O2 перпендикулярна BC.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Лёша нарисовал геометрическую картинку, обведя четыре раза свой пластмассовый прямоугольный треугольник, прикладывая короткий катет к гипотенузе и совмещая вершину острого угла с вершиной прямого. Оказалось, что "замыкающий" пятый треугольник – равнобедренный (см. рис., равны именно отмеченные стороны). Найдите острые углы Лёшиного треугольника?
Страница:
<< 102 103 104 105
106 107 108 >> [Всего задач: 603]