Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC с основанием AC вершины A , B и точка пересечения высот треугольника E лежат на окружности, которая пересекает отрезок BC в точке D . Найдите длину отрезка CD , если ABC= 2 arcsin , а радиус окружности R=5 .

Вниз   Решение


Докажите, что угол величиной no, где n — целое число, не делящееся на 3, можно разделить на n равных частей с помощью циркуля и линейки.

ВверхВниз   Решение


Докажите, что при любых вещественных aj, bj  (1 ≤ jn)  выполняется неравенство

ВверхВниз   Решение


Пусть AE и CD – биссектрисы треугольника ABC. Докажите, что если  ∠BDE : ∠EDC = ∠BED : ∠DEA,  то треугольник ABC — равнобедренный.

ВверхВниз   Решение


Натуральное число n разрешается заменить на число ab, если  a + b = n  и числа a и b натуральные.
Можно ли с помощью таких замен получить из числа 22 число 2001?

ВверхВниз   Решение


Каждая боковая грань пирамиды является прямоугольным треугольником, в котором прямой угол примыкает к основанию пирамиды. В пирамиде проведена высота. Может ли она лежать внутри пирамиды?

Вверх   Решение

Задачи

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 696]      



Задача 116998

Темы:   [ Цилиндр ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 9,10,11

Автор: Фольклор

Точка А лежит на окружности верхнего основания прямого кругового цилиндра (см. рис.), В – наиболее удалённая от неё точка на окружности нижнего основания, С – произвольная точка окружности нижнего основания. Найдите АВ, если  АС = 12,  BC = 5.

Прислать комментарий     Решение

Задача 87013

Темы:   [ Площадь сечения ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11


Сторона основания ABCD правильной четырехугольной пирамиды SABCD равна a, боковое ребро равно b. Найдите площадь сечения пирамиды плоскостью, проходящей через прямую BD параллельно прямой AS.

Прислать комментарий     Решение


Задача 35746

Темы:   [ Многогранные углы ]
[ Параллельность прямых и плоскостей ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 10,11

Докажите, что выпуклый четырёхгранный угол можно пересечь плоскостью так, чтобы в сечении получился параллелограмм.

Прислать комментарий     Решение

Задача 64956

Темы:   [ Системы точек и отрезков (прочее) ]
[ Параллельность прямых и плоскостей ]
Сложность: 3+
Классы: 10,11

В пространстве (но не в одной плоскости) расположены шесть различных точек: A, B, C, D, E и F. Известно, что отрезки AB и DE, BC и EF, CD и FA попарно параллельны. Докажите, что эти же отрезки и попарно равны.

Прислать комментарий     Решение

Задача 65526

Темы:   [ Пирамида (прочее) ]
[ Признаки перпендикулярности ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 10,11

Каждая боковая грань пирамиды является прямоугольным треугольником, в котором прямой угол примыкает к основанию пирамиды. В пирамиде проведена высота. Может ли она лежать внутри пирамиды?

Прислать комментарий     Решение

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 696]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .