Страница:
<< 1 2 3 4 [Всего задач: 20]
|
|
Сложность: 5 Классы: 10,11
|
На стороне AB треугольника ABC взята точка D. В угол ADC вписана окружность, касающаяся изнутри описанной окружности треугольника ACD, а в угол BDC – окружность, касающаяся изнутри описанной окружности треугольника BCD. Оказалось, что эти окружности касаются отрезка CD в одной и той же точке X. Докажите, что перпендикуляр, опущенный из X на AB, проходит через центр вписанной окружности треугольника ABC.
|
|
Сложность: 4- Классы: 9,10,11
|
Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.
|
|
Сложность: 5 Классы: 10,11
|
Пусть $OABCDEF$ – шестигранная пирамида с основанием $ABCDEF$, описанная около сферы $\omega$. Плоскость, проходящая через точки касания $\omega$ с гранями $OFA$, $OAB$ и $ABCDEF$, пересекает ребро $OA$ в точке $A_1$; аналогично определяются точки $B_1$, $C_1$, $D_1$, $E_1$ и $F_1$. Пусть $\ell$, $m$ и $n$ – прямые $A_1D_1$, $B_1E_1$ и $C_1F_1$ соответственно. Оказалось, что $\ell$ и $m$ лежат в одной плоскости, $m$ и $n$ также лежат в одной плоскости. Докажите, что $\ell$ и $n$ лежат в одной плоскости.
|
|
Сложность: 3+ Классы: 9,10,11
|
Дан правильный семиугольник A1A2A3A4A5A6A7. Прямые A2A3 и A5A6 пересекаются в точке X, а прямые A3A5 и A1A6 – в точке Y.
Докажите, что прямые A1A2 и XY параллельны.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q.
Докажите, что PQ ⊥ AB.
Страница:
<< 1 2 3 4 [Всего задач: 20]