Страница: 1
2 3 4 >> [Всего задач: 20]
[Теорема Паскаля]
|
|
Сложность: 5- Классы: 9,10,11
|
В окружность S вписан шестиугольник ABCDEF. Докажите, что
точки пересечения прямых AB и DE, BC и EF, CD и FA
лежат на одной прямой.
|
|
Сложность: 5- Классы: 9,10,11
|
Окружность, проходящая через вершины $B$ и $D$ четырехугольника $ABCD$, пересекает его стороны $AB$, $BC$, $CD$ и $DA$ в точках $K$, $L$, $M$ и $N$ соответственно. Окружность, проходящая через точки $K$ и $M$, пересекает прямую $AC$ в точках $P$ и $Q$. Докажите, что точки $L$, $N$, $P$ и $Q$ лежат на одной окружности.
[Теорема Паскаля]
|
|
Сложность: 6 Классы: 8,9,10
|
Докажите, что точки пересечения противоположных сторон
(если эти стороны не параллельны) вписанного шестиугольника лежат на
одной прямой (Паскаль).
Точка
M лежит на описанной окружности
треугольника
ABC;
R — произвольная точка. Прямые
AR,
BR и
CR
пересекают описанную окружность в точках
A1,
B1 и
C1. Докажите,
что точки пересечения прямых
MA1 и
BC,
MB1 и
CA,
MC1
и
AB лежат на одной прямой, проходящей через точку
R.
Даны треугольник
ABC и некоторая точка
T. Пусть
P
и
Q — основания перпендикуляров, опущенных из точки
T
на прямые
AB и
AC соответственно, a
R и
S — основания
перпендикуляров, опущенных из точки
A на прямые
TC
и
TB соответственно. Докажите, что точка пересечения
X
прямых
PR и
QS лежит на прямой
BC.
Страница: 1
2 3 4 >> [Всего задач: 20]