ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Поворот
>>
Центральная симметрия
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На медиане AM треугольника ABC нашлась такая точка K, что AK = BM. Кроме того, ∠AMC = 60°. Докажите, что AC = BK. Решение |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 158]
Многочлен P(x) с действительными коэффициентами таков, что уравнение P(m) + P(n) = 0 имеет бесконечно много решений в целых числах m и n.
На гипотенузе AB прямоугольного треугольника ABC во внешнюю сторону построен квадрат ABDE. Известно, что AC = 1, BC = 3.
Точка касания вневписанной окружности со стороной треугольника и основание высоты, проведённой к этой стороне, симметричны относительно основания биссектрисы, проведённой к этой же стороне. Докажите, что эта сторона составляет треть периметра треугольника.
На медиане AM треугольника ABC нашлась такая точка K, что AK = BM. Кроме того, ∠AMC = 60°. Докажите, что AC = BK.
Четыре кузнечика сидели в вершинах квадрата. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если A прыгает через B в точку A1, то векторы и равны). Докажите, что три кузнечика не могут оказаться
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 158] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|