ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Уравнение с целыми коэффициентами x4 + ax³ + bx² + cx + d = 0 имеет четыре положительных корня с учетом кратности. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49]
Уравнение с целыми коэффициентами x4 + ax³ + bx² + cx + d = 0 имеет четыре положительных корня с учетом кратности.
Прямые, параллельные оси Ox, пересекают график функции y = ax³ + bx² + cx + d: первая – в точках A, D и E, вторая – в точках B, C и F (см. рис.). Докажите, что длина проекции дуги CD на ось Ox равна сумме длин проекций дуг AB и EF.
Пусть известно, что все корни некоторого уравнения x3 + px2 + qx + r = 0 положительны. Какому дополнительному условию должны удовлетворять его коэффициенты p, q и r для того, чтобы из отрезков, длины которых равны этим корням, можно было составить треугольник?
Найдите зависимость между коэффициентами кубического уравнения ax3 + bx2 + cx + d = 0, если известно, что сумма двух его корней равна произведению этих корней.
Даны такие действительные числа a1 ≤ a2 ≤ a3 и b1 ≤ b2 ≤ b3, что a1 + a2 + a3 = b1 + b2 + b3, a1a2 + a2a3 + a1a3 = b1b2 + b2b3 + b1b3.
Докажите, что если a1 ≤ b1, то a3 ≤ b3.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 49] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|