|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Квадратный трёхчлен f(x) = ax² + bx + c, не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально. |
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 420]
Существует ли такое натуральное n, что
Квадратный трёхчлен f(x) = ax² + bx + c, не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
а) уравнение x² + ax + b = 0 не имеет корней, а уравнение [x²] + ax + b = 0 имеет? б) уравнение x² + 2ax + b = 0 не имеет корней, а уравнение [x²] + 2ax + b = 0 имеет?
Решите уравнение f(f(x)) = f(x), если
Натуральные числа $a$ и $b$ таковы, что $a^{n+1} + b^{n+1}$ делится на $a^n+b^n$ для бесконечного множества различных натуральных $n$. Обязательно ли тогда $a = b$?
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 420] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|