ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На каждом из 12 рёбер куба отметили его середину. Обязательно ли сфера проходит через все отмеченные точки, если известно, что она проходит
  а) через какие-то 6 из отмеченных точек;
  б) через какие-то 7 из отмеченных точек?

   Решение

Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 126]      



Задача 110158

Темы:   [ Геометрия на клетчатой бумаге ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 6
Классы: 8,9,10

Даны натуральные числа p<k<n . На бесконечной клетчатой плоскости отмечены некоторые клетки так, что в любом прямоугольнике (k+1)×n ( n клеток по горизонтали, k+1 – по вертикали) отмечено ровно p клеток. Докажите, что существует прямоугольник k×(n+1) (где n+1 клетка по горизонтали, k – по вертикали), в котором отмечено не менее p+1 клетки.
Прислать комментарий     Решение


Задача 65724

Темы:   [ Куб ]
[ Свойства сечений ]
[ Сферы (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

На каждом из 12 рёбер куба отметили его середину. Обязательно ли сфера проходит через все отмеченные точки, если известно, что она проходит
  а) через какие-то 6 из отмеченных точек;
  б) через какие-то 7 из отмеченных точек?

Прислать комментарий     Решение

Задача 65993

Темы:   [ Правильные многоугольники ]
[ Раскраски ]
[ Поворот помогает решить задачу ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4-
Классы: 9,10,11

В правильном 21-угольнике шесть вершин покрашены в красный цвет, а семь вершин – в синий.
Обязательно ли найдутся два равных треугольника, один из которых с красными вершинами, а другой – с синими?

Прислать комментарий     Решение

Задача 109189

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Примеры и контрпримеры. Конструкции ]
[ Правильные многоугольники ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Правило произведения ]
Сложность: 4-
Классы: 8,9,10,11

Попав в новую компанию, Чичиков узнавал, кто с кем знаком. А чтобы запомнить это, он рисовал окружность и изображал каждого члена компании хордой, причём хорды знакомых между собой пересекались, а незнакомых – нет. Чичиков уверен, что такой набор хорд есть для любой компании. Прав ли он? (Совпадение концов хорд считается пересечением.)

Прислать комментарий     Решение

Задача 65690

Темы:   [ Правильные многоугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 9,10,11

Можно ли отметить k вершин правильного 14-угольника так, что каждый четырёхугольник с вершинами в отмеченных точках, имеющий две параллельные стороны, является прямоугольником, если:  а) k = 6;   б) k ≥ 7?

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 126]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .