ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 126]      



Задача 98465

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Геометрия на клетчатой бумаге ]
[ Связность и разложение на связные компоненты ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 10,11

На большой шахматной доске отметили 2n клеток так, что ладья может ходить по всем отмеченным клеткам, не перепрыгивая через неотмеченные.
Докажите, что фигуру из отмеченных клеток можно разрезать на n прямоугольников.

Прислать комментарий     Решение

Задача 78609

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Индукция в геометрии ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4+
Классы: 8,9,10

В квадрате расположено K точек (K > 2). На какое наименьшее число треугольников нужно разбить квадрат, чтобы в каждом треугольнике находилось не более одной точки?
Прислать комментарий     Решение


Задача 73825

Темы:   [ Ломаные ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5-
Классы: 7,8,9

Для каких n существует такая замкнутая несамопересекающаяся ломаная из n звеньев, что каждая прямая, содержащая одно из звеньев этой ломаной, содержит ещё хотя бы одно её звено?

Прислать комментарий     Решение

Задача 109805

Темы:   [ Связность и разложение на связные компоненты ]
[ Ориентированные графы ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 5
Классы: 9,10,11

В стране 1001 город, каждые два города соединены дорогой с односторонним движением. Из каждого города выходит ровно 500 дорог, в каждый город входит ровно 500 дорог. От страны отделилась независимая республика, в которую вошли 668 городов. Докажите, что из каждого города этой республики можно доехать до любого другого ее города, не выезжая за пределы республики.

Прислать комментарий     Решение

Задача 109820

Темы:   [ Ортогональная проекция (прочее) ]
[ Прямоугольные параллелепипеды ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5
Классы: 10,11

Можно ли расположить в пространстве 12 прямоугольных параллелепипедов P1 , P2 , P12 , ребра которых параллельны координатным осям Ox , Oy , Oz так, чтобы P2 пересекался (т.е. имел хотя бы одну общую точку) с каждым из оставшихся, кроме P1 и P3 , P3 пересекался с каждым из оставшихся, кроме P2 и P4 , и т.д., P12 пересекался с каждым из оставшихся, кроме P11 и P1 , P1 пересекался с каждым из оставшихся, кроме P12 и P2 ? (Поверхность параллелепипеда принадлежит ему.)
Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 126]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .