ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ касается ω. Окружность Ωb с центром P проходит через вершину B, а окружность Ωc с центром Q – через C. Докажите, что окружности Ω, Ωb и Ωc имеют общую точку.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 149]      



Задача 53099

Темы:   [ Угол между касательной и хордой ]
[ Вписанный угол равен половине центрального ]
[ Пересекающиеся окружности ]
Сложность: 4-
Классы: 8,9

Первая из двух окружностей проходит через центр второй и пересекает еёе в точках A и B. Касательная к первой окружности, проходящая через точку A, делит вторую окружность в отношении m : n (m < n). В каком отношении вторая окружность делит первую?

Прислать комментарий     Решение


Задача 53100

Темы:   [ Угол между касательной и хордой ]
[ Вписанный угол равен половине центрального ]
[ Пересекающиеся окружности ]
Сложность: 4-
Классы: 8,9

Две окружности с центрами O1 и O2 пересекаются в точках A и B. Первая окружность проходит через центр второй и её хорда BD пересекает вторую окружность в точке C и делит дугу ACB в отношении AC : CB = n. В каком отношении точка D делит дугу ADB?

Прислать комментарий     Решение


Задача 66015

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Пересекающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 9,10,11

Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ касается ω. Окружность Ωb с центром P проходит через вершину B, а окружность Ωc с центром Q – через C. Докажите, что окружности Ω, Ωb и Ωc имеют общую точку.

Прислать комментарий     Решение

Задача 108179

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Пересекающиеся окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN.

Прислать комментарий     Решение

Задача 108490

Темы:   [ Угол между касательной и хордой ]
[ Теорема синусов ]
[ Пересекающиеся окружности ]
Сложность: 4-
Классы: 8,9

Отрезок AB является диаметром окружности. Вторая окружность с центром в точке B имеет радиус, равный 2, и пересекается с первой окружностью в точках C и D. Хорда CE второй окружности является частью касательной к первой окружности и равна 3. Найдите радиус первой окружности.

Прислать комментарий     Решение


Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .