ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На сторонах AB и BC параллелограмма ABCD выбраны точки K и L соответственно так, что  ∠AKD = ∠CLD.
Докажите, что центр описанной окружности треугольника BKL равноудален от A и C.

   Решение

Задачи

Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 512]      



Задача 66213

Темы:   [ Признаки и свойства параллелограмма ]
[ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 8,9,10

На сторонах AB и BC параллелограмма ABCD выбраны точки K и L соответственно так, что  ∠AKD = ∠CLD.
Докажите, что центр описанной окружности треугольника BKL равноудален от A и C.

Прислать комментарий     Решение

Задача 66273

Темы:   [ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
[ Проективные преобразования прямой ]
Сложность: 4
Классы: 9,10,11

Дан треугольник ABC. Точка K – основание биссектрисы внешнего угла A. Точка M – середина дуги AC описанной окружности. Точка N выбрана на биссектрисе угла C так, что  AN || BM.  Докажите, что точки M, N и K лежат на одной прямой.

Прислать комментарий     Решение

Задача 66672

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9

Автор: Нилов Ф.

Окружности $\omega_1$, $\omega_2$ с центрами $O_1$, $O_2$ соответственно лежат одна вне другой. На этих окружностях взяты точки $C_1$, $C_2$, лежащие по одну сторону от прямой $O_1O_2$. Луч $O_1C_1$ пересекает $\omega_2$ в точках $A_2$, $B_2$, а луч $O_2C_2$ пересекает $\omega_1$ в точках $A_1$, $B_1$. Докажите, что $\angle A_1O_1B_1=\angle A_2B_2C_2$ тогда и только тогда, когда $C_1C_2\parallel O_1O_2$.
Прислать комментарий     Решение


Задача 66951

Темы:   [ Пятиугольники ]
[ Вписанные и описанные многоугольники ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 9,10,11

Авторы: Mudgal A., Tejaswi N.V.

Дан вписанный пятиугольник $APBCQ$. Точка $M$ внутри треугольника $ABC$ такова, что $\angle MAB=\angle MCA$, $\angle MAC=\angle MBA$ и $\angle PMB=\angle QMC=90^{\circ}$. Докажите, что прямые $AM$, $BP$ и $CQ$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 67308

Темы:   [ Угол между касательной и хордой ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10,11

На описанной окружности треугольника $ABC$ отметили середины дуг $BAC$ и $CBA$ – точки $M$ и $N$ соответственно, и середины дуг $BC$ и $AC$ – точки $P$ и $Q$ соответственно. Окружность $\omega_1$ касается стороны $BC$ в точке $A_1$ и продолжений сторон $AC$ и $AB$. Окружность $\omega_2$ касается стороны $AC$ в точке $B_1$ и продолжений сторон $BA$ и $BC$. Оказалось, что $A_1$ лежит на отрезке $NP$. Докажите, что $B_1$ лежит на отрезке $MQ$.
Прислать комментарий     Решение


Страница: << 83 84 85 86 87 88 89 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .