ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Решите уравнения
  а)  x³ – 3x – 1 = 0;
  б)  x³ – 3x = 0.
Укажите в явном виде все корни этих уравнений.

Вниз   Решение


На вершине лесенки, содержащей N ступенек, находится мячик, который начинает прыгать по ним вниз, к основанию. Мячик может прыгнуть на следующую ступеньку, на ступеньку через одну или через 2. (То есть, если мячик лежит на 8-ой ступеньке, то он может переместиться на 5-ую, 6-ую или 7-ую.) Определить число всевозможных "маршрутов" мячика с вершины на землю.
Формат входных данных
Одно число 0 < N < 31.
Формат выходных данных
Одно число — количество маршрутов.

ВверхВниз   Решение


В основании прямой призмы лежит квадрат со стороной 5 . Боковые ребра равны . Найдите объем цилиндра, описанного около этой призмы.


ВверхВниз   Решение


Рациональные числа x, y и z таковы, что все числа  x + y² + z²,  x² + y + z²  и  x² + y² + z  целые. Докажите, что число 2x целое.

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. Третья окружность касается их обеих и пересекает прямую AB в точках C и D.
Докажите, что касательные к ней в этих точках параллельны общим касательным к двум первым окружностям.

Вверх   Решение

Задачи

Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 330]      



Задача 56895

Темы:   [ Окружность, вписанная в угол ]
[ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 4
Классы: 8,9

Окружность радиуса ua вписана в угол A треугольника ABC, окружность радиуса ub вписана в угол B; эти окружности касаются друг друга внешним образом. Докажите, что радиус описанной окружности треугольника со сторонами     равен    где p – полупериметр треугольника ABC.

Прислать комментарий     Решение

Задача 56902

Темы:   [ Теоремы Чевы и Менелая ]
[ Касающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4
Классы: 9,10

Окружность S касается окружностей S1 и S2 в точках A1 и A2.
Докажите, что прямая A1A2 проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям S1 и S2.

Прислать комментарий     Решение

Задача 58321

Темы:   [ Свойства инверсии ]
[ Касающиеся окружности ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 9,10

Докажите, что касающиеся окружности (окружность и прямая) переходят при инверсии в касающиеся окружности или в окружность и прямую, или в пару параллельных прямых.
Прислать комментарий     Решение


Задача 66216

Темы:   [ Пересекающиеся окружности ]
[ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Угол между касательной и хордой ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 9,10

Две окружности пересекаются в точках A и B. Третья окружность касается их обеих и пересекает прямую AB в точках C и D.
Докажите, что касательные к ней в этих точках параллельны общим касательным к двум первым окружностям.

Прислать комментарий     Решение

Задача 66942

Темы:   [ ГМТ (прочее) ]
[ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия (ГМТ) ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9,10,11

В угол вписаны три окружности $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ (радиус $\Gamma_1$ наименьший, а радиус $\Gamma_3$ наибольший), притом $\Gamma_2$ касается $\Gamma_1$ и $\Gamma_3$ в точках $A$ и $B$ соответственно. Пусть $l$ – касательная в точке $A$ к $\Gamma_1$. Рассмотрим все окружности $\omega$, касающиеся $\Gamma_1$ и $l$. Найдите геометрическое место точек пересечения общих внутренних касательных к парам окружностей $\omega$ и $\Gamma_3$.
Прислать комментарий     Решение


Страница: << 51 52 53 54 55 56 57 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .