ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 180]      



Задача 98337

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равные треугольники. Признаки равенства (прочее) ]
[ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE.
Докажите, что треугольник ABF – равнобедренный.

Прислать комментарий     Решение

Задача 66017

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательная окружность ]
[ Теорема синусов ]
[ Медиана, проведенная к гипотенузе ]
[ Удвоение медианы ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 9,10,11

Автор: Обухов Б.

В остроугольном треугольнике ABC проведены медиана AM и высота BH. Перпендикуляр, восстановленный в точке M к прямой AM, пересекает луч HB в точке K. Докажите, что если  ∠MAC = 30°,  то  AK = BC.

Прислать комментарий     Решение

Задача 66240

Темы:   [ Ортоцентр и ортотреугольник ]
[ Средняя линия треугольника ]
[ Три точки, лежащие на одной прямой ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Медиана, проведенная к гипотенузе ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 9,10

Авторы: Руденко А., Хилько Д.

В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.

Прислать комментарий     Решение

Задача 115649

Темы:   [ Касающиеся окружности ]
[ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
[ Угол между касательной и хордой ]
[ Медиана, проведенная к гипотенузе ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4-
Классы: 8,9

Диагонали трапеции ABCD с основаниями  AD = 3  и  BC = 1  пересекаются в точке O. Две окружности, пересекающие основание BC в точках K и L соответственно, касаются друг друга в точке O, а прямой AD – в точках A и D соответственно. Найдите  AK² + DL².

Прислать комментарий     Решение

Задача 107825

Темы:   [ Ромбы. Признаки и свойства ]
[ Вспомогательные равные треугольники ]
[ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
[ Вписанный угол, опирающийся на диаметр ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 7,8,9

Автор: Волчкевич М.А.

В ромбе ABCD величина угла B равна 40°, E – середина BC, F – основание перпендикуляра, опущенного из A на DE. Найдите величину угла DFC.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 180]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .