Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

Существует ли такой набор из 10 натуральных чисел, что каждое не делится ни на одно из остальных, а квадрат каждого делится на каждое из остальных?

Вниз   Решение


Две окружности пересекаются в точках A и B. Пусть CD – их общая касательная (C и D – точки касания), а Oa, Ob – центры описанных окружностей треугольников CAD, CBD соответственно. Докажите, что середина отрезка OaOb лежит на прямой AB.

ВверхВниз   Решение


Шахматный король обошёл всю доску 8×8, побывав на каждой клетке по одному разу, вернувшись последним ходом в исходную клетку.
Докажите, что он сделал чётное число диагональных ходов.

ВверхВниз   Решение


Автор: Ионин Ю.И.

Сумма n положительных чисел  x1, x2, x3, ..., xn  равна 1.
Пусть S – наибольшее из чисел  
Найдите наименьшее возможное значение S. При каких значениях  x1, x2, ..., xn  оно достигается?

ВверхВниз   Решение


Дан треугольник со сторонами a, b и c, причём  a ≥ b ≥ cx, y и z – углы некоторого другого треугольника. Докажите, что

bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²).

ВверхВниз   Решение


На бесконечной шахматной доске на двух соседних по диагонали чёрных полях стоят две чёрные шашки. Можно ли дополнительно поставить на эту доску некоторое число чёрных шашек и одну белую таким образом, чтобы белая одним ходом взяла все чёрные шашки, включая две первоначально стоявшие?

ВверхВниз   Решение


В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.
Может ли сумма получившихся 14 чисел оказаться равной 0?

ВверхВниз   Решение


Сборная России по футболу выиграла у сборной Туниса со счетом  9 : 5.  Докажите, что по ходу матча был момент, когда сборной России оставалось забить столько голов, сколько уже забила сборная Туниса.

ВверхВниз   Решение


Прямая, параллельная стороне BC треугольника ABC, пересекает стороны AB и AC в точках P и Q соответственно. Внутри треугольника APQ взята точка M. Отрезки MB и MC пересекают отрезок PQ в точках E и F соответственно. Пусть N – вторая точка пересечения описанных окружностей ω1 и ω2 треугольников PMF и QME. Докажите, что точки A, M и N лежат на одной прямой.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 149]      



Задача 66264

Темы:   [ Пересекающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Три точки, лежащие на одной прямой ]
[ Биссектриса делит дугу пополам ]
[ Прямая Симсона ]
Сложность: 3+
Классы: 8,9,10

Автор: Нилов Ф.

Центр окружности ω2 лежит на окружности ω1. Из точки X окружности ω1 проведены касательные XP и XQ к окружности ω2 (P и Q – точки касания), которые повторно пересекают ω1 в точках R и S. Докажите, что прямая PQ проходит через середину отрезка RS.

Прислать комментарий     Решение

Задача 66268

Темы:   [ Пересекающиеся окружности ]
[ Три точки, лежащие на одной прямой ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Радикальная ось ]
Сложность: 3+
Классы: 8,9,10

Прямая, параллельная стороне BC треугольника ABC, пересекает стороны AB и AC в точках P и Q соответственно. Внутри треугольника APQ взята точка M. Отрезки MB и MC пересекают отрезок PQ в точках E и F соответственно. Пусть N – вторая точка пересечения описанных окружностей ω1 и ω2 треугольников PMF и QME. Докажите, что точки A, M и N лежат на одной прямой.

Прислать комментарий     Решение

Задача 66314

Темы:   [ Пересекающиеся окружности ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Три прямые, пересекающиеся в одной точке ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 3+
Классы: 9,10

Две окружности пересекаются в точках A и B. Пусть CD – их общая касательная (C и D – точки касания), а Oa, Ob – центры описанных окружностей треугольников CAD, CBD соответственно. Докажите, что середина отрезка OaOb лежит на прямой AB.

Прислать комментарий     Решение

Задача 102447

Темы:   [ Пересекающиеся окружности ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Через вершины A и B треугольника ABC проведена окружность, касающаяся прямой BC, а через вершины B и C – другая окружность, касающаяся прямой AB. Продолжение общей хорды BD этих окружностей пересекает сторону AC в точке E, а продолжение хорды AD одной окружности пересекает другую окружность в точке F.
  а) Найдите отношение  AE : EC,  если  AB = 5  и  BC = 9.
  б) Сравните площади треугольников ABC и ABF.

Прислать комментарий     Решение

Задача 108080

Темы:   [ Пересекающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках A и B. К ним проведена общая касательная, которая касается первой окружности в точке C, а второй – в точке D. Пусть B – ближайшая к прямой CD точка пересечения окружностей. Прямая CB второй раз пересекает вторую окружность в точке E. Докажите, что AD – биссектриса угла CAE.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .