Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Продолжения биссектрис остроугольного треугольника ABC пересекают описанную окружность в точках A1, B1 и C1 соответственно. Докажите, что высоты треугольника A1B1C1 лежат на прямых AA1, BB1иCC1.

Вниз   Решение


Внутри угла с вершиной O взята некоторая точка M. Луч OM образует со сторонами угла углы, один из которого больше другого на 10o; A и B — проекции точки M на стороны угла. Найдите угол между прямыми AB и OM.

ВверхВниз   Решение


В треугольнике ABC угол B — прямой, величина угол C равен $ \alpha$ ( $ \alpha$ > $ {\frac{\pi}{4}}$), точка D — середина гипотенузы. Точка A1 симметрична точке A относительно прямой BD. Найдите угол BA1C.

ВверхВниз   Решение


Две окружности с центрами O1 и O2 пересекаются в точках A и B. Первая окружность проходит через центр второй и её хорда BD пересекает вторую окружность в точке C и делит дугу ACB в отношении AC : CB = n. В каком отношении точка D делит дугу ADB?

ВверхВниз   Решение


Автор: Кноп К.А.

Даны треугольник ABC (AB > AC) и описанная около него окружность. Постройте циркулем и линейкой середину дуги BC (не содержащей вершину A), проведя не более двух линий.

Вверх   Решение

Задачи

Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 1282]      



Задача 54555

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Найдите геометрическое место середин хорд данной окружности, проходящих через данную точку.

Прислать комментарий     Решение


Задача 54636

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Даны две точки A и B. Найдите геометрическое место точек, каждая из которых симметрична точке A относительно некоторой прямой, проходящей через точку B.

Прислать комментарий     Решение


Задача 54637

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

Даны окружность и точка A. Найдите геометрическое место середин хорд, высекаемых данной окружностью на всевозможных прямых, проходящих через точку A.

Прислать комментарий     Решение


Задача 56618

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

ABCD - вписанный четырехугольник, диагонали которого перпендикулярны. O - центр описанной окружности четырехугольника ABCD.
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.
Прислать комментарий     Решение


Задача 66405

Темы:   [ Вписанный угол (построения) ]
[ Биссектриса делит дугу пополам ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

Автор: Кноп К.А.

Даны треугольник ABC (AB > AC) и описанная около него окружность. Постройте циркулем и линейкой середину дуги BC (не содержащей вершину A), проведя не более двух линий.
Прислать комментарий     Решение


Страница: << 102 103 104 105 106 107 108 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .