ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Каждая грань куба заклеивается двумя равными прямоугольными треугольниками с общей гипотенузой, один из которых белый, другой — чёрный. Можно ли эти треугольники расположить так, чтобы при каждой вершине куба сумма белых углов была равна сумме чёрных углов?
В равносторонний треугольник ABC вписан прямоугольник PQRS
так, что основание прямоугольника RS лежит на стороне BC, а
вершины P и Q соответственно на сторонах AB и AC. В каком
отношении точка Q должна делить сторону AC, чтобы площадь
прямоугольника PQRS составляла
Докажите, что медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна отрезку, соединяющему середины катетов. В прямоугольном треугольнике биссектриса острого угла делит катет на отрезки m и n (m > n). Найдите другой катет и гипотенузу. Можно ли в каждую клетку таблицы 40×41 записать по целому числу так, чтобы число в каждой клетке равнялось количеству тех соседних с ней по стороне клеток, в которых написано такое же число? Докажите, что при a, b, c имеет место неравенство На дуге BC описанной окружности равностороннего треугольника ABC взята точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что 1/PQ = 1/PB + 1/PC. Четырёхугольник ABCD вписан в окружность с центром O. Биссектрисы его углов образуют четырёхугольник, вписанный в окружность с центром I, а биссектрисы внешних углов – четырёхугольник, вписанный в окружность с центром J. Докажите, что O – середина отрезка IJ. Для каких n возможны равенства: a) φ(n) = n – 1; б) φ(2n) = 2φ(n); в) φ(nk) = nk–1φ(n)? Найдите биссектрисы острых углов прямоугольного треугольника с катетами 24 и 18. Какое наибольшее количество различных целых чисел можно выписать в ряд так, чтобы сумма каждых 11 подряд идущих чисел равнялась 100 или 101? Решите уравнения а) φ(x) = x/2; б) φ(x) = x/3; φ(x) = x/4. а) Можно ли разрезать квадрат на 4 равнобедренных треугольника, среди которых нет равных? б) А можно ли разрезать равносторонний треугольник на 4 равнобедренных треугольника, среди которых нет равных? Однажды осенью Рассеянный Учёный глянул на свои старинные настенные часы и увидел, что на циферблате уснули три мухи. Первая спала в точности на отметке 12 часов, а две другие так же аккуратно расположились на отметках 2 часа и 5 часов. Учёный произвёл измерения и определил, что часовая стрелка мухам не грозит, а вот минутная сметёт их всех по очереди. Найдите вероятность того, что ровно через 40 минут после того, как Учёный заметил мух, ровно две мухи из трёх были сметены минутной стрелкой. Все таверны в царстве принадлежат трем фирмам. В целях борьбы с монополиями царь Горох издал следующий указ: каждый день, если у некоторой фирмы оказывается более половины всех таверн и число её таверн делится на 5, то у этой фирмы остается только пятая часть её таверн, а остальные закрываются. Могло ли так случиться, что через три дня у всех фирм стало меньше таверн? (Новые таверны в это время открываться не могут.) |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 1036]
Ньют хочет перевезти девять фантастических тварей весом 2, 3, 4, 5, 6, 7, 8, 9 и 10 кг в трёх чемоданах, по три твари в каждом. Каждый чемодан должен весить меньше 20 кг. Если вес какой-нибудь твари будет делиться на вес другой твари из того же чемодана, они подерутся. Как Ньюту распределить тварей по чемоданам, чтобы никто не подрался?
Все таверны в царстве принадлежат трем фирмам. В целях борьбы с монополиями царь Горох издал следующий указ: каждый день, если у некоторой фирмы оказывается более половины всех таверн и число её таверн делится на 5, то у этой фирмы остается только пятая часть её таверн, а остальные закрываются. Могло ли так случиться, что через три дня у всех фирм стало меньше таверн? (Новые таверны в это время открываться не могут.)
В ряд выписаны несколько натуральных чисел с суммой 20. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 3. Могло ли быть выписано больше 10 чисел?
Карта Квадрландии представляет собой квадрат 6×6 клеток. Каждая клетка – либо королевство, либо спорная территория. Королевств всего 27, а спорных территорий 9. На спорную территорию претендуют все королевства по соседству и только они (то есть клетки, соседние со спорной по стороне или вершине). Может ли быть, что на каждые две спорные территории претендует разное число королевств?
Какое наибольшее количество различных целых чисел можно выписать в ряд так, чтобы сумма каждых 11 подряд идущих чисел равнялась 100 или 101?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 1036]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке