Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 181]
Вершины правильного 2n-угольника A1...A2n разбиты на n пар.
Докажите, что если n = 4m + 2 или n = 4m + 3, то две пары вершин являются концами равных отрезков.
Докажите, что число неравных треугольников с вершинами в вершинах правильного
n-угольника равно ближайшему к
n²/
12 целому числу.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Правильный $n$-угольник со стороной 1 вращается вокруг другого такого же $n$-угольника, как показано на рисунке. Последовательные положения одной из его вершин в моменты, когда $n$-угольники имеют общую сторону, образуют замкнутую ломаную $\kappa$.
Докажите, что $\kappa$ ограничивает площадь, равную $6A - 2B$, где $A$, $B$ – площади правильных $n$-угольников с единичными стороной и радиусом описанной окружности соответственно.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Точка $H$ лежит на стороне $AB$ правильного пятиугольника $ABCDE$. Окружность с центром $H$ и радиусом $HE$ пересекает отрезки $DE$ и $CD$ в точках $G$ и $F$ соответственно. Известно, что $DG=AH$. Докажите, что $CF=AH$.
|
|
Сложность: 4 Классы: 7,8,9
|
В правильном десятиугольнике проведены все диагонали. Возле каждой вершины
и возле каждой точки пересечения диагоналей поставлено число +1 (рассматриваются
только сами диагонали, а не их продолжения). Разрешается одновременно изменить
все знаки у чисел, стоящих на одной стороне или на одной диагонали. Можно ли с помощью нескольких таких операций изменить все знаки на противоположные?
Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 181]