Страница:
<< 25 26 27 28 29 30 31 >> [Всего задач: 165]
|
|
Сложность: 4 Классы: 8,9,10
|
В углу шахматной доски размером m×n полей стоит ладья. Двое по очереди передвигают её по вертикали или по горизонтали на любое число полей; при этом не разрешается, чтобы ладья стала на поле или прошла через поле, на котором она уже побывала (или через которое уже проходила). Проигрывает тот, кому некуда
ходить. Кто из играющих может обеспечить себе победу: начинающий или его партнер, и как ему следует играть?
|
|
Сложность: 4 Классы: 8,9,10,11
|
На доске написано n выражений вида *x² + *x + * = 0 (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?
|
|
Сложность: 4 Классы: 9,10,11
|
Андрей и Борис играют в следующую игру. Изначально на числовой
прямой в точке
p стоит робот. Сначала Андрей говорит расстояние,
на которое должен сместиться робот. Потом Борис выбирает
направление, в котором робот смещается на это расстояние, и т.д. При каких
p Андрей может добиться того, что за конечное
число ходов робот попадет в одну из точек 0 или 1 вне
зависимости от действий Бориса?
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На столе в ряд лежат 20 плюшек с сахаром и 20 с корицей в произвольном порядке. Малыш и Карлсон берут их по очереди, начинает Малыш. За ход можно взять одну плюшку с любого края. Малыш хочет, чтобы ему в итоге досталось по десять плюшек каждого вида, а Карлсон пытается ему помешать. При любом ли начальном расположении плюшек Малыш может достичь своей цели, как бы ни действовал Карлсон?
|
|
Сложность: 4+ Классы: 9,10
|
У Васи есть 100 банковских карточек. Вася знает, что на
одной из карточек лежит 1 рубль, на другой – 2 рубля, и так
далее, на последней – 100 рублей, но не знает, на какой из
карточек сколько денег. Вася может вставить карточку в банкомат и
запросить некоторую сумму. Банкомат выдает требуемую сумму, если
она на карточке есть, не выдает ничего, если таких денег на
карточке нет, а карточку съедает в любом случае. При этом банкомат
не показывает, сколько денег было на карточке. Какую наибольшую
сумму Вася может гарантированно получить?
Страница:
<< 25 26 27 28 29 30 31 >> [Всего задач: 165]