Страница:
<< 26 27 28 29 30 31 32 >> [Всего задач: 165]
|
|
Сложность: 5- Классы: 8,9,10
|
Белые и чёрные играют в следующую игру. В углах шахматной доски стоят два
короля: белый на a1, чёрный на h8. Играющие делают ход по очереди. Начинают белые. Играющий может ставить своего короля на любое соседнее поле
(если только оно свободно), соблюдая следующие правила: нельзя увеличивать
расстояние между королями (расстоянием между двумя полями называется наименьшее
число шагов короля, за которое он может пройти с одного поля на другое: так, в
начале игры расстояние между королями – 7 ходов). Выигрывает тот, кто
поставит своего короля на противоположную кромку доски (белого короля на
вертикаль h или восьмую горизонталь, чёрного – на вертикаль a или первую горизонталь). Кто выиграет при правильной игре?
|
|
Сложность: 5 Классы: 8,9,10,11
|
Рокфеллер и Маркс играют в такую игру. Имеется $n > 1$ городов, во всех одно и то же число жителей. Сначала у каждого жителя есть ровно одна монета (монеты одинаковы). За ход Рокфеллер выбирает по одному жителю из каждого города, а Маркс перераспределяет между ними их деньги произвольным образом с единственным условием, чтобы распределение не осталось таким, каким только что было. Рокфеллер выиграет, если в какой-то момент в каждом городе будет хотя бы один человек без денег. Докажите, что Рокфеллер может действовать так, чтобы всегда выигрывать, как бы ни играл Маркс, если в каждом городе
а) ровно $2n$ жителей;
б) ровно $2n - 1$ житель.
|
|
Сложность: 5 Классы: 8,9,10,11
|
За каждым из двух круглых столиков сидит по $n$ гномов. Каждый дружит только со своими соседями по столику слева и справа.
Добрый волшебник хочет рассадить гномов за один круглый стол так, чтобы каждые два соседних гнома дружили между собой.
Он имеет возможность подружить $2n$ пар гномов (гномы в паре могут быть как с одного столика, так и с разных),
но после этого злой волшебник поссорит между собой $n$ пар гномов из этих $2n$ пар.
При каких $n$ добрый волшебник может добиться желаемого, как бы ни действовал злой волшебник?
|
|
Сложность: 3 Классы: 10,11
|
Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.
|
|
Сложность: 3 Классы: 8,9,10
|
В центре квадратного бассейна находится мальчик, а в вершине на берегу стоит
учительница. Максимальная скорость мальчика в воде в три раза меньше максимальной скорости учительницы на суше. Учительница плавать не умеет, а на берегу мальчик бегает быстрее учительницы. Сможет ли мальчик убежать?
Страница:
<< 26 27 28 29 30 31 32 >> [Всего задач: 165]