Страница:
<< 27 28 29 30 31 32 33 >> [Всего задач: 165]
В колоде 52 карты, по 13 каждой масти. Ваня вынимает из колоды по
одной карте. Вынутые карты в колоду не возвращаются. Каждый раз
перед тем, как вынуть карту, Ваня загадывает какую-нибудь масть.
Докажите, что если Ваня каждый раз будет загадывать масть, карт
которой в колоде осталось не меньше, чем карт любой другой масти,
то загаданная масть совпадет с мастью вынутой карты не менее 13 раз.
|
|
Сложность: 3+ Классы: 7,8,9,10
|
Прямоугольник 1×3 будем называть триминошкой. Петя и Вася независимо друг от друга разбивают доску 20×21 на триминошки. Затем они сравнивают полученные разбиения, и Петя платит Васе столько рублей, сколько триминошек в этих двух разбиениях совпали (оказались на одинаковых позициях). Какую наибольшую сумму выигрыша может гарантировать себе Вася независимо от действий Пети?
[Убегающий ученик]
|
|
Сложность: 3+ Классы: 7,8
|
В центре круглого бассейна плавает ученик. Внезапно к бассейну подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать?
|
|
Сложность: 3+ Классы: 9,10,11
|
На доске написано: x³ + ...x² + ...x + ... = 0. Два школьника по очереди вписывают вместо многоточий действительные числа. Цель первого – получить уравнение, имеющее ровно один действительный корень. Сможет ли второй ему помешать?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Есть 100 кучек по 400 камней в каждой. За ход Петя выбирает две кучки, удаляет из них по одному камню и получает за это столько очков, каков теперь модуль разности числа камней в этих двух кучках. Петя должен удалить все камни.
Какое наибольшее суммарное количество очков он может при этом получить?
Страница:
<< 27 28 29 30 31 32 33 >> [Всего задач: 165]